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The determination of the energy spectra of small spin systems as for instance
given by magnetic molecules is a demanding numerical problem. In this work we
review numerical approaches to diagonalize the Heisenberg Hamiltonian that
employ symmetries; in particular we focus on the spin-rotational symmetry SU(2)
in combination with point-group symmetries. With these methods one is able to
block-diagonalize the Hamiltonian and thus to treat spin systems of unprece-
dented size. Thermodynamic observables such as the magnetization are then
easily evaluated. In addition it provides a spectroscopic labeling by irreducible
representations that can be related to selection rules which can be helpful when
interpreting transitions induced by electron paramagnetic resonance, nuclear
magnetic resonance or inelastic neutron scattering. It is our aim to provide the
reader with detailed knowledge on how to set up such a diagonalization scheme.
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1. Introduction

Magnetism is a research field that is almost as old as human writing. It took several
thousand years until its nature, which is quantum, could be determined. In 1928 Werner
Heisenberg published his work on the theory of ferromagnetism, Zur Theorie des

Ferromagnetismus, in which he introduced what is today called the Heisenberg model [1].
That this spin-only model is successfully applicable to magnetism rests on the property of
many iron group elements to possess a quenched angular momentum in chemical

compounds [2]. Therefore, for many magnetic substances the Heisenberg Hamiltonian
provides the dominant term whereas effects connected to spin–orbit interaction are treated
perturbatively in these systems. For theoretical work on non-Heisenberg systems see e.g.

Refs. [3–7].
The Heisenberg Hamiltonian

H
�
Heisenberg ¼ �

X
i, j

Jij s
�
ðiÞ � s

�
ð j Þ

ð1Þ

models the magnetic system by a sum of pairwise interactions between spins. The

interaction strength (exchange parameter) between spins at sites i and j is given by a
number Jij with Jij50 referring to an antiferromagnetic and Jij40 to a ferromagnetic
coupling. The spins are described by vector operators.

In order to understand magnetic observables such as magnetization, susceptibility, heat

capacity, or electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR)
and inelastic neutron scattering (INS) spectra the knowledge of the full energy spectrum of
the investigated small magnetic system as for instance a magnetic molecule is often

indispensable. Although the Heisenberg Hamiltonian, Equation (1), appears to be not too
complicated, analytical solutions are known only for very small numbers of spins [8–10] or
for instance for the spin-1/2 chain via the Bethe ansatz [11]. The attempt to diagonalize the

Hamilton matrix numerically is very often severely restricted due to the huge dimension of
the underlying Hilbert space. For a magnetic system of N spins of spin quantum number s
the dimension is (2sþ 1)N which grows exponentially with N.
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Group-theoretical methods can help to ease this numerical problem. A further benefit

is given by the characterization of the obtained energy levels by quantum numbers and the

classification according to irreducible representations. This review intends to provide an

overview of the latest developments in efficient numerical diagonalization techniques of
the Heisenberg model using symmetries. In particular we focus on the spin-rotational

symmetry SU(2) in combination with point-group symmetries.
The full rotational symmetry of angular momenta has been employed for quite a while.

In quantum chemistry the method of irreducible tensor operators was adapted to few spin

systems along with the upcoming field of molecular magnetism [12–17]. Nowadays

the computer program MAGPACK, which completely diagonalizes the Heisenberg
Hamiltonian using SU(2) symmetry, is freely available [18]. Also for the approximate

determination of energy eigenvalues by means of Density Matrix Renormalization Group

(DMRG) methods [19,20], which can for instance treat chains of a few hundreds of spins

with high accuracy, spin-rotational symmetry was employed [21]. In other fields such as

nuclear physics this method was also adapted to model finite Fermi systems such as nuclei
employing SU(2) symmetry [22]. Early applications are also known for Hubbard models,

where one can actually exploit two SU(2) symmetries [23–26].
Besides spin-rotational symmetry many magnetic molecules or spin lattices possess

spatial symmetries that can be expressed as point-group symmetries. Nevertheless, a

combination of SU(2) with point-group symmetries is not very common. The reason, as

will become more apparent later, is that a rearrangement of spins due to point-group
operations easily leads to complicated basis transformations between different coupling

schemes. A possible compromise is to use only part of the spin-rotational symmetry

(namely rotations about the z-axis) together with point-group symmetries [27–30] or to

expand all basis states in terms of simpler product states [31–33]. During the past years a

few attempts have been undertaken to combine the full spin-rotational symmetry with

point-group symmetries. Oliver Waldmann combines the full spin-rotational symmetry
with those point-group symmetries that are compatible with the spin coupling scheme, i.e.

avoiding complicated basis transformations between different coupling schemes [34].

Along the same lines, especially low-symmetry groups such as D2 are often applicable since

the coupling scheme can be organized accordingly, compare Ref. [35] for an early

investigation. Sinitsyn, Bostrem, and Ovchinnikov follow a similar route for the square
lattice antiferromagnet by employing D4 point-group symmetry [36,37].

Very recently a general scheme was developed that allows us to combine spin-

rotational symmetry with general point-group symmetries [38–40]. The key problem, that

the application of point-group operations leads to states belonging to a basis characterized

by a different coupling scheme whose representation in the original basis is not (easily)

known, can be solved by means of graph-theoretical methods that have been developed in
another context [41,42]. We discuss in detail how this method can be implemented and

present results for numerical exact diagonalizations of Heisenberg spin systems of

unprecedented size [39,40,43,44]. Our aim is to provide the reader with sufficient material

to be able to employ these powerful group-theoretical methods. They can for instance also

be applied to calculate higher order Wigner-nJ symbols that appear when the double

exchange is modeled in mixed-valent spin systems [45–47].
The article is organized as follows. Section 2 introduces the basic concepts, i.e. the

Hamiltonian and its properties, the irreducible tensor operators, point group operations,
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and the construction of basis states for irreducible representations. Section 3 demonstrates

with the help of three examples that the Hamiltonian of spin systems of unprecedented size

can be diagonalized completely. The outlook in Section 4 briefly summarizes and shows

perspectives. The main part of this article is contained in an extended appendix that

explains all the technical details to set up the discussed diagonalization scheme.

2. Conceptual ideas

2.1. Spin Hamiltonian of magnetic molecules

The research field of molecular magnetism deals with the investigation of the magnetic

properties of chemical compounds composed of a number of ions that reaches from only a

few up to dozens of them [48–51]. For the magnetic modeling of the molecule only those

ions are taken into account which possess unpaired electrons and thus a non-vanishing

magnetic moment. Since the molecules, which are prepared in the form of a crystal or

powder sample, are often quite well separated from each other by their ligands, inter-

molecular interactions can be neglected in most cases. Additionally, the electrons can very

often be treated as localized so that both features lead to a simplified sketch of the

chemical compound, namely a spin system. The interactions between different spins of the

system then depend of course on the chemical environment and stem from direct exchange

or super-exchange [52] via chemical bridges. Figure 1 shows such a simplification for

a CrIII8 compound which can easily be modeled by a ring-like system of interacting

spins [53–55].
A general Hamiltonian that models magnetic molecules could be written as

H
�
general ¼ H

�
exchange þH

�
Zeeman, ð2Þ

where, to be more specific, in a system of N spins, i.e. i, j¼ 1, . . . ,N, the two terms assume

the form

H
�
exchange ¼

X
i, j

s
�
ðiÞ � Jij � s

�
ð j Þ,

ð3Þ

H
�
Zeeman ¼ �B

X
i

s
�
ðiÞ � gi � ~B: ð4Þ

H
�
exchange describes in a compact way the (isotropic and anisotropic) exchange interaction

between two single-spin vector operators s
�
ðiÞ and s

�
ð j Þ as well as the single-ion anisotropy

[14]. The quantity Jij is a second-rank Cartesian tensor containing the corresponding

parameters. H
�
Zeeman couples the spins to an external magnetic field ~B. In general,

the coupling to an external field can be anisotropic and is thus described by local

matrices gi.
It turns out that for many magnetic molecules the isotropic Heisenberg Hamilton

operator provides a very good model. This means that anisotropic contributions can be

neglected, as will be done in the following. In addition, we assume that for the

highly symmetric spin systems to be treated in this article gi¼ g are scalars, and the same
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for all ions. Then the resulting Hamiltonian that models the system simplifies to

H
�
¼ H
�
Heisenberg þH

�
Zeeman ð5Þ

with

H
�
Heisenberg ¼ �

X
i, j

Jij s
�
ðiÞ � s

�
ð j Þ

ð6Þ

H
�
Zeeman ¼ g�BS

�
� ~B: ð7Þ

Figure 1. [Colour online] Simplification of the chemical structure of a CrIII8 compound (top) to the
corresponding spin system for the same molecule (bottom). Dots represent spin sites, lines exchange
interactions.
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where S
�
¼
P

i s�
ðiÞ is the total spin. As already mentioned, Jij50 refers to an antiferro-

magnetic and Jij40 to a ferromagnetic coupling.
The Heisenberg Hamiltonian is completely isotropic in spin space (SU(2) symmetry),

i.e. the commutators of the square of the total spin S
�

and its z-component S
�

z with

H
�
Heisenberg vanish

h
H
�
Heisenberg,S

�

z
i
¼ 0,

h
H
�
Heisenberg,S

�

2
i
¼ 0: ð8Þ

Since
�
S
�

2,S
�

z
�
¼ 0, the total magnetic quantum numberM and the quantum number of the

total spin S serve as good quantum numbers and a simultaneous eigenbasis of S
�

z, S
�

2 and

H
�
Heisenberg can be found.
A well adapted basis is then given by states of the form j�SMi which can be constructed

according to a vector-coupling scheme (see Appendix A.2). These states are already

orthogonal eigenstates of S
�

2 and S
�

z and � denotes a set of additional quantum numbers

resulting from the coupling of the single spins s
�
ðiÞ to the total spin S

�
. Due to Equations (8)

the matrix elements of the Heisenberg Hamiltonian h�0S0M0jH
�
Heisenbergj�SMi between states

with different S andM vanish, leading to a block-factorized Hamilton matrix in which each

block can be diagonalized separately. In this case the field dependence of the energies

induced by the Zeeman term in Equation (7) can easily be added without further

complicated calculations. This is because the z-direction can be chosen to point along the

external field, so that the Zeeman term commutes with H
�
Heisenberg, S

�

2 and S
�

z. Then M still

serves as a good quantum number, and the effect of the external field ~B ¼ B � ~e z on

eigenstates of H
�
Heisenberg results in a simple field dependence of the energy eigenvalues Ei

according to

EiðBÞ ¼ Ei þ g�BBMi: ð9Þ

This way thermodynamic properties depending on the temperature T and the external

magnetic field ~B can easily be calculated from the energy spectrum of the investigated

magnetic molecule once the energies Ei are known.

2.2. Irreducible tensor operator method

The determination of the matrix elements of the Heisenberg Hamiltonian can elegantly

be achieved with the help of irreducible tensor operators [12–17]. To this end, it is

necessary to reformulate the spin vector operators in terms of irreducible tensor

operators and to subsequently use tensorial algebra. In this regard the underlying

theory is clearly based on group as well as representation theory. At this point it would

probably not make sense to introduce all group-theoretical tools which lead to a

complete understanding of the technical implementations used in this work. Several

textbooks provide deep knowledge about these topics and the authors would like to

refer to those [56–61]. Nevertheless, at least the origin of the concepts and formulations

shall be explained. Some understanding of abstract group and representation theory is

assumed.
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2.2.1. Irreducible tensor operators

An irreducible tensor operator T
�

ðkÞ of rank k is defined by the transformation properties of
its components q under a general coordinate rotation R according to

D
�
ðRÞT
�

ðkÞ
q D
�

�1ðRÞ ¼
X
q0

T
�

ðkÞ
q0 D

ðkÞ
qq0 ðRÞ: ð10Þ

Here D
�
ðRÞ denotes the operator associated with the coordinate rotation R. The subscripts

q as well as q0 take the values �k,�kþ 1, . . . , k. The matrix elements of the so-called

Wigner rotation matrices D(k)(R) are denoted by D
ðkÞ
qq0 ðRÞ (cf. Appendix A.1).

The case k¼ 0 in Equation (10) directly leads to what is called a scalar operator. As can

easily be seen, a scalar operator is invariant under coordinate rotation, i.e. with
D
ð0Þ
00 ðRÞ ¼ 1

D
�
ðRÞT

�

ð0ÞD
�

�1ðRÞ ¼ T
�

ð0ÞD
ð0Þ
00 ðRÞ

¼ T
�

ð0Þ: ð11Þ

In analogy to the states which span the irreducible representation D(1) of R3 and which are
said to behave under coordinate rotations like the components of a vector the irreducible

tensor operator T
�

ð1Þ is called a vector operator. For example, the components of a first-

rank irreducible tensor operator s
�

ð1Þ derived from the Cartesian components of the spin
vector operator are given by

s
�

ð1Þ
0 ¼ s

�

z,

s
�

ð1Þ
�1 ¼ �

ffiffiffi
1

2

r �
s
�

x � is
�

y
�
:

ð12Þ

Stressing the analogy between the behavior of states and irreducible tensor operators
under coordinate rotations, the role of the components T

�

ðkÞ
q in Equation (10) has to be

specified. The components of the irreducible tensor operator T
�

ðkÞ of rank k serve as a basis

and therefore span the (2kþ 1)-dimensional irreducible representation D(k) of the rotation
group R3.

For comparison, consider a group G and its irreducible representations �(G). The direct

product of the irreducible representations �(i) and �( j ) separately spanned by two sets of
basis vectors is given by �(i)

��( j ). It is reducible (cf. Equation (32)) if linear combinations

of the product functions can be found which transform as basis functions for an

irreducible representation. This concept can – in a one-to-one correspondence – be
extended to tensor operators since they behave like the above mentioned functions. As a

result, the direct product of two irreducible tensor operators spanning D(k1) and D(k2) can

be decomposed into irreducible representations spanned by linear combinations of the
products T

�

ðk1Þ
q1

T
�

ðk2Þ
q2

. The coefficients of these linear combinations are the Clebsch–Gordan

coefficients of Equation (34).
Formally, the direct product of two irreducible tensor operators is given byn

T
�

ðk1Þ � T
�

ðk2Þ
oðkÞ
q
¼
X
q1,q2

Ck1 k2 k
q1 q2 q

T
�

ðk1Þ
q1

T
�

ðk2Þ
q2

, ð13Þ
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where possible values of the resulting rank k can be determined in analogy to the vectorial
coupling of spins and are given by k¼ jk1� k2j, jk1� k2j þ 1, . . . , k1þ k2. Equation (13) is
a fundamental expression for the application of the irreducible tensor operator method
within a numerical exact diagonalization routine. It leads to the desired formulation of the
spin Hamiltonian in terms of irreducible tensor operators.

As an example, the coupling of the first-rank irreducible tensor operators U
�

ð1Þ and V
�

ð1Þ

according to Equation (13) shall be presented here. Considering a compound irreducible
tensor operator with k¼ 0, the coupling results inn

U
�

ð1Þ � V
�

ð1Þ
oð0Þ
¼

1ffiffiffi
3
p

�
U
�

ð1Þ
1 V
�

ð1Þ
�1 �U

�

ð1Þ
0 V
�

ð1Þ
0 þU

�

ð1Þ
�1V�

ð1Þ
1

�
, ð14Þ

where for the Clebsch–Gordan coefficients the equation C110
q1q20
¼ 1=

ffiffiffi
3
p
� ð�1Þ1�q1�q1, q2 was

used [62]. Expressing the spherical components of V
�

ð1Þ and U
�

ð1Þ in terms of the Cartesian
components in analogy to Equation (12) yieldsn

U
�

ð1Þ � V
�

ð1Þ
oð0Þ
¼ �

1ffiffiffi
3
p

�
U
�

xV
�

x þU
�

yV
�

y þU
�

zV
�

z
�
, ð15Þ

which is, apart from the prefactor, the scalar product of the Cartesian vector operators
U
�
and V

�
.

Finally, the problem of coupling irreducible tensor operators is identical to the
coupling of angular momenta (cf. Appendix A.1). Thus, from a mathematical point of
view an advantage when using irreducible tensor operators is that one can adapt the
mathematical approaches for coupling angular momenta and that one can refer to them.

2.2.2. Matrix elements of irreducible tensor operators

In the case of an irreducible tensor operator T
�

ðkÞ the matrix elements of this operator can
be calculated according to the Wigner–Eckart theorem. This states, for matrix elements
with respect to spin states of the form j�SMi, that

	
�SM



T
�

ðkÞ
q



�0S0M0� ¼ ð�1ÞS�M	�S��T
�

ðkÞ
���0 S0� S k S0

�M q M0


 �
: ð16Þ

The matrix element is apart from a phase factor decoupled into a Wigner-3J symbol and a
quantity h�SkT

�

ðkÞk�0S0i called the reduced matrix element of the irreducible tensor operator
T
�

ðkÞ. The proof of Equation (16) is given in standard textbooks about group theory and
quantum mechanics [56,61]. However, the physical meaning of this theorem and the
consequences for the use within the irreducible tensor operator method shall be briefly
discussed here.

First of all, it should be mentioned that the Wigner–Eckart theorem relies on
the transformation properties of the wave functions and operators. Furthermore, since the
reduced matrix element is completely independent of any magnetic quantum number, the
Wigner–Eckart theorem separates the physical part of the matrix element – the reduced
matrix element – from the purely geometrical part reflected by the Wigner-3J symbol. The
value of the reduced matrix element depends on the particular form of the tensor operator
and the states (cf. Appendix A.4) whereas the Wigner-3J symbol only depends on
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rotational symmetry properties. If a zero-rank (k¼ 0) irreducible tensor operator is
assumed, the Wigner-3J symbol in Equation (16) directly reflects that there is no transition
between states j�SMi with different S or M. The matrix of the Heisenberg Hamiltonian
from Equation (30), which can be written as a zero-rank irreducible tensor operator (see
Appendix A.3), therefore takes block-diagonal form without further calculations.

According to Equation (16) the calculation of the matrix element of an irreducible
tensor operator is directly related to the calculation of the reduced matrix element of this
operator. The reduced matrix element of an irreducible tensor operator s

�

ðkÞ with k¼ 0, 1,
acting on a basis function of a single spin, can be derived from the evaluation of the
Wigner–Eckart theorem. It yields the expressions

hsks
�

ð0Þksi ¼ hsk1
�
ksi ¼ ð2sþ 1Þ

1
2, ð17Þ

hsks
�

ð1Þksi ¼ s sþ 1ð Þ 2sþ 1ð Þ½ �
1
2, ð18Þ

where the zero-rank irreducible tensor operator of a single spin s
�

ð0Þ is given by the unity
operator 1

�
and the components of s

�

ð1Þ are given by Equation (12).
Using Equation (13) in combination with the Wigner–Eckart theorem in Equation (16)

and a decomposition of states j�SMi into product states according to Equation (34), one
obtains the expression [63]

h�1s1�2s2Sk
n
T
�

ðk1Þ � T
�

ðk2Þ
oðkÞ
q
k�01 s

0
1 �
0
2 s
0
2 S
0i

¼ 2Sþ 1ð Þ 2S0 þ 1ð Þ 2kþ 1ð Þ½ �
1
2

s1 s01 k1

s2 s02 k2

S S0 k

0
B@

1
CA

	 h�1 s1kT
�

ðk1Þk�01 s
0
1ih�2 s2kT�

ðk2Þk�02 s
0
2i: ð19Þ

This is the reduced matrix element of a compound irreducible tensor operator of rank k
which consists of the direct product of two irreducible tensor operators of general ranks k1
and k2.

Equation (19) is the basic formula for calculating reduced matrix elements of
irreducible tensor operators composed of single-spin tensor operators as they appear in the
Heisenberg Hamiltonian. By a successive application every irreducible tensor operator of
that kind can be decoupled into a series of phase factors, Wigner-9J symbols and the
reduced matrix elements of single-spin tensor operators (cf. Equation (12)). The successive
application of Equation (19) is often called the decoupling procedure since the compound
tensor operator that describes the system under consideration is decoupled so that its
reduced matrix element can be calculated (see Appendix A.4).

2.3. Point-group symmetries in Heisenberg spin systems

Magnetic molecules, for instance those of Archimedian type [64–66], are often – not only
from a scientific point of view – perceived to be of special beauty (cf. Figure 2). Certainly,
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this view is closely related to the high symmetry which can be found in the chemical
structures and is referred to as point-group symmetry [67]. Point-group symmetries do not

only contribute to the beauty of magnetic molecules, but they are also very instrumental in
characterizing the energy levels of the spectra and thus in extracting physical information

from the underlying spin system. Often a numerical exact diagonalization remains
impossible unless point-group symmetries are used in order to reduce the dimensionalities
of the Hamilton matrices.

Figure 2. [Colour online] Sketch of the {Mo72Fe30} molecule (top, picture taken from Ref. [65]). The
underlying spin system exhibits the structure of an icosidodecahedron, i.e. possesses icosahedral (Ih)
point-group symmetry (bottom).
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It must be emphasized that there is a clear difference between a group of symmetry

operations in real space that map the molecule on itself and the corresponding group of

symmetry operations in a many-body spin system. Since from a physical point of view a

magnetic molecule is described by a system of interacting spins with a certain

coupling graph (cf. Figure 1(b)), the term point-group refers rather to a group of

symmetry operations on this coupling graph than to operations in real space. As a direct

result, the group-theoretical characterization is also rather based on the symmetry of the

coupling graph than on the molecular symmetry. Of course, since the number of appearing

coupling constants as well as their strengths are estimated from the chemical structure of

the molecule, there is a close connection between the symmetries of the molecule and the

corresponding coupling graph but not necessarily a one-to-one correspondence.
In Heisenberg spin systems point-group symmetries can be included by mapping the

symmetry operations on spin permutations. In order to emphasize this, the term spin-

permutational symmetry instead of point-group symmetry is often used. However, in the

work at hand the term point-group symmetry is used although the symmetry is always

incorporated by mapping the point-group operations on spin permutations. In context to

this, it has to be mentioned that in systems which include anisotropies the incorporation of

point-group symmetries is much more complicated since rotations in real space have to be

performed [63,68–70].
Figure 3 exemplifies the coupling graphs of a square and a rectangle consisting

of identical spins s with the symmetry axes of D4 and D2 being indicated. The rectangle

can be seen as resulting from the square – a system of four interacting spins with only

one coupling constant J – by introducing a second coupling constant of a different

strength J0 between spin pairs h1, 4i and h2, 3i. In this case the coupling strength is

indicated by the length of the coupling paths between the spins. The introduction of

the second coupling constant then results in a reduction of the point-group symmetry

from D4 to D2.
The point-group operations on the spin system can be identified with permutations of

the spins that leave the Hamiltonian invariant [71]. Such a permutation is represented by

Figure 3. [Colour online] Coupling graph of a square of identical spins s with D4 symmetry axes
(left-hand side) and a rectangle with D2 symmetry axes (right-hand side).
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an operator G
�
ðRiÞ of the point-group G for which the commutation relation�

H
�
Heisenberg,G

�
ðRiÞ

�
¼ 0 ð20Þ

holds, where i¼ 1, . . . , h numbers the symmetry operations up to the order h of G.
The theory of group representations now provides the theoretical background for the

use of point-group symmetries. The irreducible representations �(n) of a point-group G can

be used to classify the energy eigenstates of H
�
Heisenberg and to block-factorize the Hamilton

matrices. The dimensionalities of the resulting subspaces, i.e. blocks, can be calculated

with only little information. The irreducible matrix representations !(n)(Ri) of the group

elements, i.e. the permutation operators, are somewhat arbitrary concerning the choice of

the underlying basis. Thus, these elements are represented by their character, i.e. the trace

of the particular matrix representation. The character �(n)(Ri) is invariant under unitary

transformations and is in general given by

�ðnÞðRÞ ¼ Tr!ðnÞðRÞ ¼
Xln
�¼1

�ðnÞðRÞ��, ð21Þ

where ln denotes the dimension of the n-th irreducible representation �(n).
A given character table of G now enables one to calculate the dimensions of the

resulting blocks within the Hamilton matrix, i.e. the dimensions of the subspaces

H(S,M,�(n)). Character tables for various point-groups can be found in almost every

textbook about the theory of group representations. The authors would like to refer to

[57,61,72] concerning the construction of character tables.
In order to calculate the dimensions of the subspaces H(S,M,�(n)), the reducible

matrix representations G(Ri) of the operators G
�
ðRiÞ have to be considered. With

l, m¼ 1, . . . , dimH(S,M) the matrix elements of these matrices are given by

GðRiÞlm ¼ h�lSMjG�ðRiÞj�mSMi,

where the subscripts attached to � indicate that specific basis states are considered. The

decomposition of the character �(Ri)¼
P

ll G(Ri)ll with respect to the irreducible

representations n of G then yields

�ðRiÞ ¼
X
n

an�
ðnÞðRiÞ: ð22Þ

Using the great orthogonality theorem [61], the above equation results in the

expression

an ¼ dimHðS,M,�ðnÞÞ

¼
1

h

X
k

Nk½�
ðnÞðCkÞ�


�ðCkÞ, ð23Þ

where an gives the multiplicity of the irreducible representation �(n) that is contained in the

reducible representation G(Ck). C refers to the classes which the group elements can be

divided into. Each class contains equivalent operations, for example n-fold rotations,

which are linked by the same group operation and thus hold the same character.

Nk denotes the number of elements of Ck.
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From Equation (23) the dimensions of the subspaces H(S,M,�(n)) can be calculated,
but no information about the basis states that span these Hilbert spaces is given. The
required symmetrized basis states can be determined by the application of the projection
operator [61]

PðnÞ�� ¼
ln
h

X
i

½�ðnÞðRiÞ���

G
�
ðRiÞ: ð24Þ

This operator projects out that part of a function j�i which belongs to the �-th row of the
irreducible representation �(n). A subsequent application of the operator in Equation (24)
on basis states, for example of the form j�SMi, is called the basis-function generating
machine [61].

Although Equation (24) provides the information required to construct symmetrized
basis states that serve as a basis for the irreducible representations of G, it is important to
notice that the matrices of �(n) have to be known completely. Of course, this does not cause
a problem as long as G entirely consists of one-dimensional irreducible representations.
However, if higher-dimensional irreducible representations appear, it is often more
convenient to use the projection operator

PðnÞ ¼
X
�

PðnÞ�� ¼
ln
h

X
i

½�ðnÞðRiÞ�

G
�
ðRiÞ, ð25Þ

which only requires information which can be extracted from the character table of G. The
operator of Equation (25) projects out that part of a function j�SMi which belongs to the
irreducible representation �(n), irrespective of the row. As a consequence one has to
orthonormalize the resulting functions – for example by a Gram–Schmidt orthonormaliza-
tion – in order to obtain the correct symmetrized basis functions (cf. Appendix A.5).

2.4. Point-group symmetry operations acting on vector-coupling states

In the previous Section 2.3 some general remarks about the use of point-group symmetries
have already been made. In order to transform the Hamilton matrix to a block-diagonal
form with respect to irreducible representations �(n) of a point group G, one has to construct
symmetrized basis functions j�SM�(n)

i. Equation (25) provides the projection operator that
projects out that part of a state which belongs to the n-th irreducible representation of G.
However, the main challenge when constructing symmetrized basis states is to find an
expression for the action of the operators G

�
ðRiÞ on states of the form j�SMi.

The above mentioned operators G
�
ðRiÞ which correspond to operations on the coupling

graph (cf. Figure 3) can be defined by their action on the product basis composed of the
single-spin eigenstates of s

�

zðiÞ. The states of the product basis of N identical spins can be
denoted by

js1m1i � js2m2i � � � � � jsNmNi � jm1m2 � � �mNi

and fulfill the eigenvalue equation

s
�

zðiÞjm1 � � �mi � � �mNi ¼ mijm1 � � �mi � � �mNi

according to their definition.
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Now, in a spin system consisting of N spins an operator G
�
ðRÞ is considered that is given

in the form G
�
ð	ð1Þ	ð2Þ � � �	ðN ÞÞ and describes a point-group operation. The notation G

�
ð	Þ

indicates for all i¼ 1, . . . ,N that the point-group operation interchanges the spin at site i
with the spin at site 	(i). The action of the operator G

�
ðRÞ on the product basis is given by

G
�
ðRÞjm1m2 � � �mNi ¼ jm	ð1Þm	ð2Þ � � �m	ðN Þi: ð26Þ

In Equation (26) the following happens: by the action of G
�
ðRÞ the single-spin system at site

i takes the z-component which the system at site 	(i) has taken previously. The result is a

different state of the product basis with permuted m-values.
The operators G

�
ðRÞ are only defined by their action on product states whereas

the details of constructing symmetrized basis states that are linear combinations of

vector-coupling states of the form j�SMi are still unknown. How to find an expression

for the action of G
�
ðRÞ on these vector-coupling states is – to some extent – shown in

Refs. [34] and [37].
However, a slightly different perspective concerned with the application of general

symmetry operations to a vector-coupling basis shall be presented here (for further

technical details see Appendix A.5). In order to clarify the action of an operator

representing a point-group operation on a vector-coupling state, the states are labeled

according to the coupling scheme they belong to. Additionally, the set of quantum
numbers referring to the coupling scheme is abbreviated by Greek letters. Primes indicate

different basis states within the same coupling scheme. With these conventions one obtains

the following general result for a transition between two coupling schemes a and b which is

induced by an operator G
�
representing a point-group operation:

G
�
j�SMia ¼ ��,
j
SMib: ð27Þ

The Kronecker symbol ��,
 on the right-hand side indicates that the values of the spin
quantum numbers of the different sets � and 
 are the same. Re-expressing the right-hand

side of Equation (27) within states belonging to the coupling scheme a, i.e. inserting a

suitable form of the identity operator 1
�
, directly leads to the very important final result

G
�
j�SMia ¼

X
�0
��,
 ah�

0SMj
SMib j�
0SMia ð28Þ

which contains so-called general recoupling coefficients ah�SMj
SMib. A general

recoupling coefficient can be seen as a scalar product between vector-coupling states
belonging to different coupling schemes a and b.

It is by no means trivial to find an expression for a recoupling coefficient relating

different coupling schemes if more than three or four spins are present. By definition the

expressions for the elements of the transition matrix relating two different coupling

schemes result in Wigner-nJ symbols (cf. Appendix A.1). While for three interacting spins
Wigner-6J symbols occur, the size n of these Wigner coefficients increases with every

additional spin taken into account. For four interacting spins the recoupling coefficient is

expressed by a Wigner-9J symbol and for five interacting spins the recoupling is described

by Wigner-12J symbols.
From a computational point of view it turns out to be unfavorable to use algebraic

expressions for higher symbols than Wigner-9J symbols although there exist expressions
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for 12J symbols and 15J symbols [62]. In order to find an effective way to describe general
recoupling coefficients, one should use expressions in which only Wigner-6J symbols
appear. These 6J symbols can be calculated using the formula [73]

j1 j2 j3

J1 J2 J3

� �
¼ Dð j1, j2, j3ÞDð j1, J2, J3Þ

	 DðJ1, j2, J3ÞDðJ1, J2, j3Þ
X
t

ð�1Þtðtþ 1Þ!

f ðtÞ
, ð29Þ

where the triangle coefficient D(a, b, c) reads

Dða, b, cÞ ¼
ðaþ b� cÞ! ða� bþ cÞ! ð�aþ bþ cÞ!Þ

ðaþ bþ cþ 1Þ!


 �1
2

:

The function f(t) in Equation (29) is given by

f ðtÞ ¼ ðt� j1 � j2 � j3Þ! ðt� j1 � J2 � J3Þ!

	 ðt� J1 � j2 � J3Þ! ðt� J1 � J2 � j3Þ!

	 ð j1 þ j2 þ J1 þ J2 � tÞ! ð j2 þ j3 þ J2 þ J3 � tÞ!

	 ð j3 þ j1 þ J3 þ J1 � tÞ!

The sum in Equation (29) runs over non-negative integer values of t for which no factorial
in f(t) has a negative argument. Since even the evaluation of Wigner-6J symbols is a rather
involved task as can be seen from Equation (29), it is helpful to analyze the symmetry
properties of the appearing symbols (cf. Figure 14 in the appendix) in order to reduce the
computational effort when constructing symmetrized basis states. In this regard, when
expressing the action of a point-group operation on a basis state according to Equation
(28), only those recoupling coefficients have to be calculated which are non-zero.

So far, nothing has been said about the generation of a formula that describes a general
recoupling coefficient. Finding a formula which only contains Wigner-6J symbols and
some phase factors can most efficiently be done by using graph theory (see Appendix B).
However, the choice of the coupling scheme which underlies the construction process of
the basis states is essential for an effective computational realization of the numerical exact
diagonalization. In this regard the invariance of the coupling scheme under the applied
point-group operations is a desired property (see Appendices A.5 and A.6).

3. Applications

In this section we would like to present three applications for realistic spin systems of
unprecedented size that can be treated using irreducible tensor operator techniques and
point-group symmetries: a cuboctahedron of N¼ 12 spins of spin quantum number s¼ 3/2
(Hilbert space dimension 16,777,216), an icosahedron of N¼ 12 spins of spin quantum
number s¼ 3/2 (same dimension), and a spin ring of N¼ 10 and s¼ 5/2 (Hilbert space
dimension 60,466,176) known as the ferric wheel Fe10 [74].

It is very important to note that for the case of antiferromagnetic coupling the
cuboctahedron as well as the icosahedron, see Figure 4, belong to the class of
geometrically frustrated spin systems [40,75–77] and are thus hardly accessible by means
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of Quantum Monte Carlo (QMC) calculations due to a so-called negative-sign problem

[78–80]. Complete diagonalization is therefore the only way to study the interesting

behavior of such systems both as functions of field and temperature [28,44,66,81].
Density Matrix Renormalization Group (DMRG) techniques provide a very powerful

approximation mainly for one-dimensional spin systems such as chains [19,82,83]. The

method delivers the relative ground states for orthogonal subspaces. Extensions to include

the approximate evaluation of excitations have been developed recently [84], but are still

primarily useful for one-dimensional systems. For the example of Fe10, this method could

provide lowest levels for each total magnetic quantum number M and thus one could

evaluate the crossing fields of the lowest levels. More or less the same holds true for the

Lanczos diagonalization technique [85], with which again extremal energy eigenvalues and

eigenstates can be evaluated. QuantumMonte Carlo would be able to evaluate observables

Figure 4. [Colour online] Structure of the cuboctahedron (top) and the icosahedron (bottom).
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for Fe10, since this ten-site system is non-frustrated. Nevertheless, QMC cannot determine
higher lying energy levels which would be crucial for, e.g. inelastic neutron scattering
studies.

Since the three investigated systems exhibit a highly symmetric structure they can be
modeled with just one nearest neighbor interaction, therefore the Heisenberg Hamiltonian
simplifies to

H
�
Heisenberg ¼ �J

X
hi, j i

s
�
ðiÞ � s

�
ð j Þ:

ð30Þ

The summation runs over pairs hi, j i of nearest neighbors of single-spin vector operators s
�

at sites i and j counting each pair only once. For the following examples J50 is assumed.

3.1. The cuboctahedron

The magnetism of antiferromagnetically coupled and geometrically frustrated spin systems
is a fascinating subject due to the richness of phenomena that are observed [86,87]. One of
the most famous spin systems is the two-dimensional kagomé lattice [87–92]. It is very
interesting and from the point of view of theoretical modeling it is appealing that similar
but zero-dimensional spin systems – in the form of magnetic molecules [64,65,93–95] –
exist that potentially could show many of the special features of geometrically frustrated
antiferromagnets. The cuboctahedron which consists of squares surrounded by triangles
serves as one zero-dimensional ‘‘little brother’’ of the kagomé antiferromagnet; the
icosidodecahedron, which consists of pentagons surrounded by triangles, is another one.
Such finite size antiferromagnets offer the possibility to discover and understand
properties that are shared by the infinitely extended lattices. An example is the discovery
of localized independent magnons [91,96], which explain the unusual magnetization jump
at the saturation field. Also the plateau at 1/3 of the saturation magnetization that appears
in systems built of corner sharing triangles could be more deeply investigated by looking at
the cuboctahedron and the icosidodecahedron [28,97].

The energy levels of the cuboctahedron (N¼ 12, s¼ 3/2, Hilbert space dimension
16,777,216), shown in Figure 5, could be numerically evaluated using the D2 point-group
symmetry. Since the Hamiltonian commutes with the total spin, the energy levels can be
arranged in multiplets and plotted versus their total spin quantum number S. For
symmetric spin systems with antiferromagnetic coupling the spectrum is usually bounded
by parabolas [98–100].

For low-lying sectors of S¼ 0, 1, 2, 3 we also determined the energy levels according to
irreducible representations of the full octahedral group Oh, see Figure 6. One feature that
can be clearly seen in Figure 6 is the existence of an additional low-lying singlet below the
first triplet.

Figure 7 shows the magnetization curve at T¼ 0 for the regular cuboctahedron with
s¼ 3/2. This curve shows the aforementioned plateau at 1/3 of the saturation magneti-
zation and a jump to saturation of height DM¼ 2. This jump is insofar unusual since
normally jumps in the magnetization curve occur at crossings of energy levels that belong
to multiplets of adjacent total spin quantum numbers, i.e. 1 and 2 or 5 and 6. This always
results in a jump of height one. If the jump is bigger it results from a crossing of levels
whose spin quantum numbers have a difference bigger than one. Such a jump belongs to
what is called frustration effects [44].
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Figure 5. [Colour online] Full energy spectrum of a cuboctahedron with s¼ 3/2. The energy levels
have been calculated using D2 point-group symmetry. Since the Hamiltonian commutes with the
total spin, the energy levels can be arranged in multiplets and plotted versus their total spin quantum
number S.

15

M
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)

gmB/|J|
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0 2 4 6

s=3/2

8 10 12 14

Figure 7. [Colour online] Magnetization as a function of applied field at T¼ 0 for the regular
cuboctahedron with s¼ 3/2. The extended plateau at 1/3 of the saturation magnetization is clearly
visible.

Figure 6. [Colour online] Low-lying part of the energy spectrum of a cuboctahedron s¼ 3/2. The
energy levels are labeled according to irreducible representations of the full octahedral group Oh.
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Figure 8 compares the heat capacity (top) and the zero-field susceptibility (bottom) for
the regular cuboctahedron with s¼ 1/2, s¼ 1, and s¼ 3/2. The heat capacity shows a
pronounced double peak structure for s¼ 1/2 and s¼ 1 which dissolves into a broad peak
with increasing spin quantum number. The broad peak also moves to higher temperatures
with increasing s. The reason for the first sharp peak is two-fold. Since there are several
gaps between the low-lying levels the density of states has a very discontinuous structure
which results in the double peak structure. For s¼ 1/2 the low-lying singlets provide a very
low-lying non-magnetic density of states which is responsible for the fact that the first
sharp peak is at such low temperatures. For s¼ 1 the first sharp peak results from both
excited singlet as well as lowest triplet levels. For s¼ 3/2 a remnant of the first sharp peak
is still visible; it is given by the low-lying singlets, but since they are so few, also influenced
by the lowest triplet levels. The behavior of the heat capacity is contrasted by the
susceptibility, bottom of Figure 8, which reflects mostly the density of states of magnetic
levels and is only weakly influenced by low-lying singlets. Therefore, the first sharp peak,
or any other structure at very low temperatures, is absent.

3.2. The icosahedron

A spin system where the spins are mounted at the vertices of an icosahedron and interact
antiferromagnetically along the edges seems to be rather appealing since it exhibits unusual

(a)

(b)

0 2

1.5

3

2

1

0

dM
/d

B
 (

a.
u.

)
C

/(
2s

 k
B
)

1.0

0.5

0.0

4 6

T/åJå
8 10

0 2 4 6

T/åJå
8

s=1/2
s=1
s=3/2

s=1/2
s=1
s=3/2

10

Figure 8. [Colour online] Zero-field heat capacity (top) and zero-field susceptibility (bottom) for the
regular cuboctahedron with s¼ 1/2, s¼ 1, and s¼ 3/2.
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frustration properties such as metamagnetic phase transitions [76,101–103].
Unfortunately, it appears to be challenging to synthesize such structures although
icosahedra are rather stable cluster configurations [104].

Here we investigate the properties of an icosahedron (N¼ 12) with single-spin quantum
number s¼ 3/2 (Hilbert space dimension 16,777,216). The complete set of energy
eigenvalues has been determined using D2 symmetry. Figure 9 displays the low-lying part
of all levels. Looking at the data file it turns out that very many (really unusually many)
levels are highly degenerate, which is in accordance with earlier investigations of
icosahedra with smaller single-spin quantum number [77,102]. We find that for every
sector of total spin S and total magnetic quantum number M the irreducible represen-
tations A2, B1, and B2 contain exactly the same energy eigenvalues, whereas A1 is different.
The non-degenerate ground state belongs to A1. In addition very often near degeneracies
occur.

Figure 10 shows the related zero-field heat capacity (top) and zero-field susceptibility
(bottom). While the susceptibility does not look so unusual compared to other spin
structures, the heat capacity appears to be really weird. Half way up the initial rise at very
low temperatures there is a Schottky-like peak that stems from the slightly split ground
state (S¼ 0) levels. The further rise is due to the fact that the lowest 2	 3 degenerate
(S¼ 1) level is energetically rather close. Although higher-lying levels are separated by
gaps from the lowest levels they also contribute to the heat capacity due to their massive
degeneracy. Altogether this results in a low-temperature heat capacity that strongly differs
from the heat capacity of the cuboctahedron, cf. Figure 8.

The icosahedron may also serve as an example for the technical complexity due to the
evaluation of recoupling coefficients. When combining Ih symmetry with SU(2) many
different recoupling formulas have to be generated (119 for the 120 group operations
minus the identity to be precise). This renders a treatment of the s¼ 3/2 icosahedron in Ih
impossible. Although the sizes of the Hamilton matrices for the irreducible representations
would be small, it is the construction of basis states that turns the evaluation of the needed
matrix elements into a very lengthy procedure. Even in a parallelized job on 256 cores on a
supercomputer this task could not be completed. For the s¼ 1 icosahedron we could finish
a decomposition into irreducible representations of Ih, but – to give an example – the

–30

–35

E
/|J

|
0 1 2 3

S
4 5

Figure 9. Low-lying energy levels of an antiferromagnetically coupled icosahedron N¼ 12 and
s¼ 3/2. Since the Hamiltonian commutes with total spin, the energy levels can be arranged in
multiplets and plotted versus their total spin quantum number S. The ground state possesses S¼ 0.
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construction and subsequent diagonalization of the largest subspace, which has only a
dimension of 3315, took about three days on 128 brand new Nehalem processors.
Figure 11 shows the low-lying part of the energy spectrum of an icosahedron with s¼ 1.
The energy levels are labeled according to irreducible representations of the full
icosahedral group Ih. The exact and near degeneracies that have been discussed above

(a)

(b)

Figure 10. Zero-field heat capacity (top) and zero-field susceptibility (bottom) for the regular
icosahedron with s¼ 3/2.

Figure 11. [Colour online] Low-lying part of the energy spectrum of an icosahedron with s¼ 1. The
energy levels are labeled according to irreducible representations of the full icosahedral group Ih.
Since the many symbols would overlap strongly they have been slightly displaced to improve clarity.
Nevertheless, they belong to integer S values.
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for the case of s¼ 3/2 and D2 can now be resolved. For instance, the lowest S¼ 1 level
belongs to T2u and is thus three-fold degenerate. It is split from the higher-lying T2g by
only 3/1000jJj, which in any calculation or measurement would look like a six-fold
degeneracy, see also Ref. [102].

3.3. Rings

Molecular ferric wheels are among the very first magnetic molecules. It appears that
they can be synthesized in many even numbered sizes, e.g. N¼ 6, 8, . . . , 18 FeIII spins
[74,105–109]. Since the spin of the Fe(III) ions is s¼ 5/2 the Hilbert space dimension grows
rapidly from one ring size to the next. For the ferric wheel FeIII10 it already reaches
60,466,176 rendering a complete diagonalization impossible, at least in the past [74]. Based
on the observation that the lowest energy eigenvalues Emin(S ) obey a quadratic
dependence with respect to total spin [39,43,110–113], which is Landé’s interval rule,
approximations could be derived for the level crossing fields [110] as well as for low-lying
excitations in for instance the truly giant ferric wheel FeIII18 [114]. As mentioned earlier,
QMC is also capable of evaluating observables for even-membered unfrustrated spin
rings [80]. Nevertheless, none of the methods is able to determine higher-lying states.

In the following we present the first complete diagonalization study of a spin ring
similar to FeIII10 , i.e. with N¼ 10 and s¼ 5/2. This enables us to subsequently evaluate all
thermodynamic functions, all excited levels, and if needed even the evolution for time-
dependent observables. For the diagonalization we used only the D2 symmetry because it
reduces the matrices already sufficiently and allows a faster computation of recoupling
coefficients and thus matrix elements compared to the C10 symmetry.

Figure 12 displays the low-lying energy levels for various sectors of total spin S. The
rotational band structure of energy levels, which is at the heart of the aforementioned
approximation, is clearly visible. Having obtained the eigenvalues an evaluation of the
magnetization as a function of temperature and field is easily possible. Figure 13 shows the
susceptibility as a function of temperature (top) and the magnetization as a function of

0 2

–40

–50

–60

–70

4 6

S

E
/å

Jå
8 10 12

Figure 12. Low-lying energy levels of an antiferromagnetically coupled spin ring with N¼ 10 and
s¼ 5/2. Since the Hamiltonian commutes with total spin, the energy levels can be arranged in
multiplets and plotted versus their total spin quantum number S. The lowest energy eigenvalues
Emin(S ) obey an approximate quadratic dependence on total spin S (Landé’s interval rule).
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applied field (bottom) of an antiferromagnetically coupled spin ring with N¼ 10 and
s¼ 5/2. The exchange parameter J¼�9.6 cm�1 as well as the susceptibility data are taken
from Ref. [74]. g¼ 2.0 was assumed for the calculation as in the original paper. Since
the theoretical susceptibility curve is now known exactly, a detailed discussion of
the experimental data becomes possible. As conjectured already in Ref. [74] the
low-temperature hump of the susceptibility is not a feature of the ring Hamiltonian. We
found numerically that it can also not be produced by a (reasonable) next-nearest neighbor
interaction. The authors of the experimental paper suggested that it might be produced by
dimers of Fe(III), that should also contribute (slightly) to the large temperature behavior,
where the agreement with the theoretical curve is also not perfect. Our obtained energy
eigenvalues would now allow us to set up a model that contains the ring and an unknown
amount of dimer impurities. Open parameters would then be the amount of impurity and
the g value which very likely deviates slightly from 2.

4. Outlook

In this review we have undertaken the attempt to explain how numerical approaches
to diagonalize the Heisenberg Hamiltonian work, which employ the spin-rotational

(a)

(b)
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Figure 13. [Colour online] Susceptibility (top) and magnetization (bottom) of an antiferromagnet-
ically coupled spin ring with N¼ 10 and s¼ 5/2. The exchange parameter J¼�9.6 cm�1 as well as
the susceptibility data are taken from Ref. [74].
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symmetry SU(2) in combination with point-group symmetries. We hope that we could
provide the reader with detailed knowledge on how to set up such a diagonalization
scheme, especially through the extended technical appendix.

What remains open for the future is to develop efficient schemes to evaluate recoupling
coefficients, which at the present stage can be a very time consuming procedure that
sometimes renders the calculation of matrix elements practically impossible although the
complete matrix would be rather small in the end. A natural next step consists in finding
optimal coupling schemes for a given molecule and point-group symmetry.

Acknowledgements

We thank Dante Gatteschi, Boris Tsukerblat, Martin Höck, and Jörg Ummethum for carefully
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[83] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[84] E. Jeckelmann, Phys. Rev. B 66, 045114 (2002).

[85] C. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950).
[86] A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).
[87] J. Greedan, J. Mater. Chem. 11, 37 (2001).
[88] H. Diep, ed., Magnetic Systems with Competing Interactions (World Scientific, Singapore,

1994).
[89] Y. Narumi, K. Katsumata, Z. Honda, J.-C. Domenge, P. Sindzingre, C. Lhuillier, Y. Shimaoka,

T. C. Kobayashi, and K. Kindo, Europhys. Lett. 65, 705 (2004).
[90] M. E. Zhitomirsky, Phys. Rev. Lett. 88, 057204 (2002).
[91] J. Schulenburg, A. Honecker, J. Schnack, J. Richter, and H.-J. Schmidt, Phys. Rev. Lett. 88,

167207 (2002).
[92] J. L. Atwood, Nat. Mater. 1, 91 (2002).

[93] A. Müller, A. M. Todea, J. van Slageren, M. Dressel, H. Bögge, M. Schmidtmann, M. Luban,
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H. Nojiri, J. Raftery, C. Schröder, G.A. Timco, F. Tuna, W. Wemsdorfer, and

R.E.P. Winpenny, Chem. Eur. J. 12, 8961 (2006).
[105] D. Gatteschi, A. Caneschi, L. Pardi, and R. Sessoli, Science 265, 1054 (1994).

[106] A. Caneschi, A. Cornia, A. C. Fabretti, S. Foner, D. Gatteschi, R. Grandi, and L. Schenetti,

Chem. Eur. J. 2, 1379 (1996).

[107] R. Saalfrank, I. Bernt, E. Uller, and F. Hampel, Angew. Chem.-Int. Edit. Engl. 36, 2482

(1997).

[108] G. Abbati, A. Caneschi, A. Cornia, A. Fabretti, and D. Gatteschi, Inorg. Chim. Acta 297, 291

(2000).

[109] P. Santini, S. Carretta, G. Amoretti, T. Guidi, R. Caciuffo, A. Caneschi, D. Rovai, Y. Qiu, and

J. R. D. Copley, Phys. Rev. B 71, 184405 (2005).

[110] M.-H. Julien, Z. Jang, A. Lascialfari, F. Borsa, M. Horvatić, A. Caneschi, and D. Gatteschi,
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A. Realization of the irreducible tensor operator technique

In this section the theoretical foundations presented in Section 2 shall be specified. To this end, after
having developed a basic idea of the coupling of angular momenta a spin square deals as a small
example system. It is demonstrated how an appropriate basis can be constructed and what the
Heisenberg Hamiltonian looks like when expressed in terms of irreducible tensor operators. Later
on, it is shown how the matrix elements can be evaluated by decoupling the irreducible tensor
operator that describes the system. A central aspect is the use of point-group symmetries in
combination with irreducible tensor operators that leads to the occurrence of general recoupling
coefficients.
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A.1. Coupling of angular momenta and Wigner-nJ symbols

As a first step the coupling of two general angular momenta j
�
1 and j

�
2 shall be discussed. Regarding

this, the work at hand mainly refers to the use of definitions and name conventions that have been
introduced by Wigner [57].

The vector coupling rule for the addition of angular momenta, known from elementary atomic
physics, states that the resulting angular momenta J

�
can be characterized by a quantum number J.

J assumes all values
j j1 � j2j, j j1 � j2j þ 1, . . . , j1 þ j2 � 1, j1 þ j2, ð31Þ

where j1 and j2 denote the quantum numbers of the angular momenta j
�
1 and j

�
2. Equation (31) is also

referred to as the triangular condition for the coupling of two angular momenta.
From a group-theoretical point of view the eigenstates j jmi of j

�

z and j
�

2 span a (2jþ 1)-

dimensional irreducible representation D( j ) of the group R3, i.e. the group of all rotations within
three-dimensional space. Keeping this in mind, the above vector addition rule (31) is equivalent to

Dð j1Þ �Dð j2Þ ¼
Xj1þj2

J¼j j1�j2j

DðJÞ: ð32Þ

According to this equation, the direct product between two irreducible representations of dimensions
(2j1þ 1) and (2j2þ 1), which is in general reducible, decays into (2Jþ 1)-dimensional irreducible
representations with respect to J.

Now, the operators D
�

ð j1ÞðRÞ and D
�

ð j2ÞðRÞ are associated with an arbitrary coordinate rotation R
of R3 and operate in the Hilbert spaces spanned by j j1m1i and j j2m2i. What does Equation (32) mean
for the direct product D( j1)(R)�D( j2)(R) of the corresponding matrix representations? The product
can be transformed into a block-diagonal form U(R) by a unitary matrix A, i.e.

Dð j1ÞðRÞ �Dð j2ÞðRÞ ¼ AyUðRÞA, ð33Þ

where U(R) has the form

UðRÞ ¼

Dðj j1�j2jÞðRÞ 0 . . . 0

0 Dðj j1�j2jþ1ÞðRÞ . . . 0

..

. ..
.

. . . ..
.

0 0 . . . Dð j1þj2ÞðRÞ

2
66664

3
77775:

The matrices D(J)(R) appearing therein comprise matrix elements with respect to those functions that
span the irreducible representations D(J) in Equation (32).

The determination of the elements of the transformation matrix A has been a central task in the
theory of group representations. The elements of A are the so-called Clebsch–Gordan coefficients

Cj1 j2 J
m1 m2 M

. They appear in a more familiar form as scalar products between a state of the form j j1 j2JMi
and the product states j j1m1 j2m2i leading to the decomposition

j j1j2JMi ¼
X
m1,m2

h j1m1 j2m2j j1 j2JMij j1m1 j2m2i

¼
X
m1,m2

Cj1 j2J
m1m2M

j j1m1j2m2i: ð34Þ

The Clebsch–Gordan coefficients therefore relate two different orthonormal sets of basis vectors. It
should be emphasized that these sets are obviously not orthogonal to each other because they span
the same space. The Clebsch–Gordan coefficients are non-zero only if the vector addition rule from
Equation (31) and simultaneously the equation m1þm2¼M hold. A very important symmetry of
the Clebsch–Gordan coefficients is

Cj1j2J
m1m2M

¼ ð�1Þj1þj2�JCj2j1J
m2m1M

, ð35Þ

with (�1) j1þj2�J¼�1 according to Equation (31).
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In order to reveal the symmetry properties of the Clebsch–Gordan coefficients, they are
reformulated in a straightforward manner. A proper reformulation leads to the Wigner coefficients
or Wigner-3J symbols

j1 j2 J

m1 m2 M


 �
,

which are related to the Clebsch–Gordan coefficients by

j1 j2 J

m1 m2 M


 �
¼ ð�1Þ j1�j2�Mð2Jþ 1Þ�

1
2Cj1j2J

m1m2�M
: ð36Þ

The relation between Clebsch–Gordan coefficients and the Wigner-3J symbols from Equation (36)
directly leads to non-zero values of the Wigner-3J symbols only if m1þm2þM¼ 0 holds and the
vector addition rule from Equation (31) is fulfilled.

Expressed in terms of Wigner-3J symbols the symmetry property of the Clebsch–Gordan
coefficients given in Equation (35) takes the form

j1 j2 J

m1 m2 M


 �
¼ ð�1Þ j1þj2þJ

j2 j1 J

m2 m1 M


 �
: ð37Þ

Thus, the Wigner-3J symbols are invariant under an even number of permutations of the columns
whereas under a single permutation they obey Equation (37). A further evaluation of the symmetry
properties of the Clebsch–Gordan coefficients yields an additional symmetry of the Wigner-3J
symbols, i.e.

j1 j2 J

m1 m2 M


 �
¼ ð�1Þ j1þj2þJ

j1 j2 J

�m1 �m2 �M


 �
: ð38Þ

So far the coupling of only two angular momenta has been considered. A procedure similar to
the one which has led to the Wigner-3J symbols now leads to the occurrence of Wigner-6J symbols.
In the case of a coupling of three angular momenta, J

�
¼ j
�
1 þ j

�
2 þ j

�
3, a basis can be constructed in

which the representations of the operators J
�

2 and J
�

z as well as j
�

2
1, j
�

2
2, and j

�

2
3 are diagonal. Obviously,

there exists a certain freedom of choice in the construction of this basis. The resulting J
�
can be

constructed in three different ways, namely

J
�
¼ ð j
�
1 þ j

�
2Þ þ j

�
3, ð39Þ

J
�
¼ j
�
1 þ ð j

�
2 þ j

�
3Þ, ð40Þ

J
�
¼ ð j
�
1 þ j

�
3Þ þ j

�
2: ð41Þ

This leads to three different basis sets, each with the square of one of the operators j
�

0 ¼ j
�
1 þ j

�
2,

j
�

00 ¼ j
�
2 þ j

�
3, and j

�

000 ¼ j
�
1 þ j

�
3 given in diagonal form. The matrix elements of the unitary

transformation matrix which connects two of these sets of basis states can be found as scalar
products between states belonging to two different coupling schemes. Expressing a state belonging to
a coupling scheme resulting from a coupling according to Equation (39) in terms of states belonging
to the scheme resulting from Equation (40) yields

j j1 j2 j12 j3JMi ¼
X
j23

h j1 j2 j3 j23Jj j1 j2 j12 j3J ij j1 j2 j3 j23JMi, ð42Þ

with the quantum numbers j12 and j23 referring to j
�

02 and j
�

002, respectively.
Scalar products of the kind found in Equation (42) – often called recoupling coefficients –

are independent of any magnetic quantum number. They can be evaluated by decomposing
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the vector-coupling states into a sum of product states with the help of an extended version of
Equation (34). For example, the decomposition of the ket on the left-hand side of the
aforementioned recoupling coefficients yields

j j1 j2 j3 j23JMi ¼
X

m1,m2,m3

h j1m1 j2m2 j3 m3j j1 j2 j3 j23JMi

	 j j1m1 j2m2 j3m3i: ð43Þ

The scalar products in Equation (43), i.e. the matrix elements of the transformation matrix
that connects the vector-coupling state with the product states, are called in analogy to the
former name convention generalized Clebsch–Gordan coefficients Cj1 j2 j3 j23J

m1m2m3m23M
for the coupling of

three angular momenta. They can be simplified to a product of Clebsch–Gordan coefficients
according to

Cj1 j2 j3 j23 J
m1m2m3m23M

¼
X
m23

Cj2 j3 j23
m2m3m23

� Cj1 j23 J
m1m23M

: ð44Þ

As one can see, generating generalized Clebsch–Gordan coefficients for the coupling of more than
three angular momenta and – in addition – an expression of it in terms of Clebsch–Gordan
coefficients is then a straightforward task. Here it should be mentioned that according to Equation
(44) generalized Clebsch–Gordan coefficients can also be expressed as a sum over products of
Wigner-3J symbols using the relation from Equation (36). Coefficients of this kind are then called
generalized Wigner coefficients [115].

The recoupling coefficients that appear in Equation (42) can now be reformulated in terms of
Wigner-6J symbols in order to reveal their symmetry properties. For the transition between the basis
sets belonging to j12 and j23 the corresponding Wigner-6J symbol is related to the recoupling
coefficient by [57]

j1 j2 j12

j3 J j23

� �
¼ ð�1Þj1þj2þj3þJð2j12 þ 1Þ�

1
2

	 ð2j23 þ 1Þ�
1
2h j1 j2 j3 j23J j j1 j2 j12 j3J i: ð45Þ

Equations (43) and (44) directly show that a Wigner-6J symbol can be expressed as a sum over
products of Clebsch–Gordan coefficients or, by using Equation (36), over products of Wigner-3J
symbols.

For the sake of completeness, also the Wigner-9J symbols [57] shall be given which result as
elements of the transition matrices when recoupling four angular momenta. For example the
transition between two different sets of basis states yields a Wigner-9J symbol like

j1 j2 j12

j3 j4 j34

j13 j24 J

0
B@

1
CA ¼ ½ð2j12 þ 1Þð2j34 þ 1Þð2j13 þ 1Þð2j24 þ 1Þ��

1
2

	 h j1 j2 j12 j3 j4 j34Jj j1 j3 j13 j2 j4 j24J i: ð46Þ

A very comprehensive overview of algebraic expressions for Wigner-nJ symbols as well of their
symmetry properties is given in Ref. [62]. Regarding the use of Wigner symbols in connection with
irreducible tensor operators, here only a graphical visualization of the triangular conditions for a
Wigner-6J symbol is shown. The Wigner-6J symbol is non-zero only if for certain triads of quantum
numbers the triangular condition (Equation (31)) holds. For which combination of quantum
numbers of angular momenta the triangular condition has to be valid in order to yield a non-zero
Wigner-6J symbol, is visualized graphically in Figure 14.

Since a Wigner-9J symbol can be written as a sum over products of Wigner-6J symbols [62], these
triangular conditions play an important role in reducing the computational effort when matrix
elements of the Heisenberg Hamiltonian are calculated using irreducible tensor operators.
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A.2. The construction of basis states

The reduction of the dimensionalities of the Hilbert spaces in which the Hamilton matrices are set up
in order to solve the eigenvalue problem is always a desirable, but also numerically involved task.
Especially if the basis a priori reflects symmetry properties of the system, an appropriate choice can
be of great help. As mentioned in Section 2, a basis that consists of vector-coupling states and
incorporates full spin-rotational (SU(2)) symmetry would be the first choice. In isotropic spin
systems as described by a Heisenberg Hamiltonian the Hamilton matrix is then block-diagonalized
with respect to S and M without further calculations since there are no transition elements between
states of a different total magnetic quantum number M and different total-spin quantum number S.

The vector-coupling states used in the present work appear in the form j�SMi. � denotes a set of
intermediate quantum numbers resulting from the chosen coupling scheme according to which the
spins are coupled. As mentioned in the previous section the choice of the coupling scheme is
somewhat arbitrary since it only reflects the bracketing in the expression for the total spin operator
of the system S

�
¼
P

i s�i
.

The simplest choice of a coupling scheme would probably be a successive coupling of the single-
spin vector operators s

�i
. In the case of a spin square the set of intermediate quantum numbers,

if coupled according to a successive coupling scheme, looks like

� ¼ fs12 ¼ S1, s123 ¼ S2g

leading to a vector-coupling state of the form js1s2S1s3S2s4SMi. Here, the notation of the
intermediate spin quantum numbers, i.e. s12 and s123, is changed in comparison to Appendix A.1.
Intermediate spins are now numbered with respect to their order of appearance in the coupling
scheme and additionally overlined. This notation has a clear advantage if larger spin systems are
investigated and is used in the following. In order to clarify which spins are coupled, the single-spin
quantum numbers si can also be found in the ket. It would not be necessary to include them since
they appear as fixed numbers, but it turns out to be more convenient.

Now, if the coupling scheme is chosen and the framework of the resulting basis states is fixed,
one has to construct the basis states by finding those values of the intermediate spins that are valid
according to Equation (31). This procedure can be visualized by constructing a coupling pyramid as
shown in Figure 15. In Figure 15 four spins with s¼ 1 are successively coupled in order to yield the
values of the total-spin quantum number S. The (red) subscripts next to the quantum numbers of the
intermediate spins denote the number of different paths leading to the same value for an intermediate
spin quantum number, i.e. the multiplicity. The small (gray) numbers interrupting the lines
connecting different intermediate spin quantum numbers indicate the quantum numbers of the single
spins, i.e. si¼ 1. For the sake of clarity, on the left of Figure 15 the underlying coupling scheme is
given once more.

Of course, a successive coupling scheme is not the only possible way to couple the single spins s
�i

to a total spin S
�
. For example, the construction of quasi-classical states as described in Refs. [39] and

Figure 14. Graphical visualization of the four triangular conditions occurring in a Wigner-6J
symbol which have to be valid in order to yield a non-zero result.
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[40] requires a different coupling scheme. There, a coupling scheme is chosen in which spins
belonging to a certain sublattice are coupled in order to get the total sublattice spin that is afterwards
coupled to the total spin of the system. In Figure 16 a coupling pyramid for a different coupling
scheme of a spin square is shown. The spins s

�1
, s
�2

and s
�3
, s
�4

are coupled to yield intermediate spins
S
�1

and S
�2
, respectively. The intermediate spins are then coupled to the total spin S

�
.

The resulting multiplicity of states with the same quantum number S is obviously independent of
the chosen coupling scheme. At this point it is important to realize once again that these states,
although resulting from different coupling schemes, form basis sets of the same Hilbert space H. In
the case of a square the coupling of four single spins s¼ 1 discussed above results in basis states that
span the subspaces H(S ) with S¼ 0, 1, . . . , 4. Writing this result in a different way using Equation
(22), one obtains for the direct product of the irreducible representations D(1) of the single spins the
following expression:

Dð1Þ �Dð1Þ �Dð1Þ �Dð1Þ ¼ 3 �Dð0Þ þ 6 �Dð1Þ þ 6 �Dð2Þ þ 3 �Dð3Þ þ 1 �Dð4Þ:

Knowledge of the dimensions of the resulting irreducible representations, i.e. subspaces H(S ), is
a central task whenever performing numerical exact diagonalization. Deduced from a successive
coupling of the spins, the dimensions dim H(S ) can be calculated by a simple recurrence formula.

The number of paths leading to a certain combination (S, n) is denoted by dS. n refers to the
number of participating spins in each step and runs from 1 to N. n can also be seen as labeling the

Figure 15. [Colour online] Successive coupling of four spins s¼ 1. The (red) subscripts denote
the multiplicity, i.e. the number of paths leading to the spin quantum number. The gray numbers
refer to the spin quantum numbers of the coupled single spins. On the left the coupling scheme is
indicated.

Figure 16. [Colour online] Pairwise coupling of four spins s¼ 1. The (red) subscripts denote the
multiplicity, i.e. the number of paths leading to the spin quantum number. The gray numbers refer to
the spin quantum numbers of the coupled single or intermediate spins. On the left the coupling
scheme is indicated.

434 R. Schnalle and J. Schnack

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



rows of the coupling pyramid for a successive coupling (see Figure 15). In the case of a homonuclear
system with N spins s, the multiplicity dS (S, nþ 1) is given by

dSðS, nþ 1Þ ¼
XminðSþs, n�sÞ

S0¼jS�sj

dSðS
0, nÞ, ð47Þ

where S lies in the interval that is bounded by

ðnþ 1Þs � S �
0 if 2sðnþ 1Þ even
1
2 if 2sðnþ 1Þ odd

�
ð48Þ

according to a vector coupling rule (cf. Equation (31)). The number of paths leading to a certain
quantum number S for one spin is just

dSðS, 1Þ ¼
1 if S ¼ s

0 else:

�
ð49Þ

The dimension of the Hilbert space H(S ) is then given by dim H(S )¼ dS (S, N) � (2Sþ 1).
The dimensions within a heteronuclear spin system, i.e. a system with different values of single-

spin quantum numbers, are obtained along the same route. However, the range of valid values for S
has to be calculated for each step of recurrence separately, in contrast to the use of Equation (48).
Furthermore, the sum in Equation (47) would run from S0 ¼ jS� sij to minðSþ si,

Pn
i¼1 siÞ where the

spin quantum number of every single spin si is individually labeled by the index i.

A.3. The Heisenberg Hamiltonian expressed as an irreducible tensor operator

In order to determine the spectra of magnetic molecules as it is done throughout this work, the
Heisenberg Hamiltonian of Equation (30) has to be expressed as an irreducible tensor operator. In
this section a general expression for the Heisenberg Hamiltonian is presented which can be used as a
starting point for the calculation of the energy spectrum using the irreducible tensor operator
approach.

Spin dimer – The first step in finding an expression for the Heisenberg Hamiltonian in the form of an
irreducible tensor operator is done by considering a spin dimer. The Hamiltonian of the dimer takes
the simple form

H
�
dimer ¼ �J s

�
ð1Þ � s

�
ð2Þ: ð50Þ

Now, using Equation (13) the above Equation (50) can easily be reproduced. Since the Heisenberg
term is given by a scalar product, the corresponding compound irreducible tensor operator is of rank
k¼ 0. Using Equations (12)–(15) one finds the expressionn

s
�

ð1Þð1Þ � s
�

ð1Þð2Þ
oð0Þ
¼
X
q1,q2

C1 1 0
q1 q2 0
� s
�

ð1Þ
q1
ð1Þs
�

ð1Þ
q2
ð2Þ

¼
1ffiffiffi
3
p

�
s
�

ð1Þ
�1ð1Þ � s�

ð1Þ
1 ð2Þ þ s

�

ð1Þ
1 ð1Þ � s�

ð1Þ
�1ð2Þ � s

�

ð1Þ
0 ð1Þ � s�

ð1Þ
0 ð2Þ

�

¼ �
1ffiffiffi
3
p s
�
ð1Þ � s

�
ð2Þ:

Thus, the tensorial form of the Heisenberg Hamiltonian of a spin dimer is

H
�
dimer ¼

ffiffiffi
3
p

J
n
s
�

ð1Þð1Þ � s
�

ð1Þð2Þ
oð0Þ

: ð51Þ

Spin triangle – Since the tensorial form of H
�
dimer in Equation (51) describes a simple bilinear

spin–spin interaction, an expression for a general Heisenberg Hamiltonian can now be developed.
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As a first extension a spin triangle is considered. The Hamiltonian that has to be converted to an
irreducible tensor operator is

H
�
4 ¼ �J

�
s
�
ð1Þ � s

�
ð2Þ þ s

�
ð2Þ � s

�
ð3Þ þ s

�
ð3Þ � s

�
ð1Þ
�
: ð52Þ

In a very general form the successive coupling of three single-spin irreducible tensor operators of
ranks k1, k2 and k3 leads to

T
�

ðkÞ

;
ðk1, k2, k3, k1Þ ¼

n�
s
�

ðk1Þð1Þ � s
�

ðk2Þð2Þ
�ðk1Þ
� s
�

ðk3Þð3Þ
oðkÞ

: ð53Þ

Here k denotes the rank of the resulting irreducible tensor operator and k1 the rank of the
intermediate (coupled) one. The ranks of the many-particle tensor operators are given by
the coupling rules for spin quantum numbers known from the spin vector coupling. For example,
the rank k1is given by k1 ¼ jk1 � k2j, jk1 � k2j þ 1, . . . , k1 þ k2 with k being determined accordingly.

It must be emphasized that T
�

ðkÞ
; includes all spin–spin interactions of a trimeric spin system, and thus

it has to be specified in order to give the desired tensorial formulation of H
�
4. To indicate this

difference we used the index ; in T
�

ðkÞ
; and 4 in H

�
4.

With s
�

ð0Þ ¼ 1
�
and the tensorial expression found for a bilinear coupling in Equation (51) one

arrives at

H
�
4 ¼

ffiffiffi
3
p

J
�
T
�

ð0Þ
; ð1, 1, 0, 0Þ þ T

�

ð0Þ
; ð1, 0, 1, 1Þ þ T

�

ð0Þ
; ð0, 1, 1, 1Þ

�
¼

ffiffiffi
3
p

J
X
hi, j i

T
�

ð0Þ
; ðfkig, fkigjki ¼ kj ¼ 1Þ: ð54Þ

The notation T
�

ð0Þ
; ðfkig, fkigjki ¼ kj ¼ 1Þ indicates that only the ranks of single-spin tensor operators i

and j are chosen to equal 1 whereas the other tensor operators are of zero rank. The rank of the
intermediate tensor operator k1 is fixed by the contributions of k1 and k2 to the zero-rank tensor
operator T

�

ðk¼0Þ
; .

Following Equations (51) and (54), the Heisenberg Hamiltonian of a general spin system is
given by

H
�
Heisenberg ¼

ffiffiffi
3
p X

hi, j i

Jij T
�

ð0Þðfkig, fkigjki ¼ kj ¼ 1Þ, ð55Þ

where the irreducible tensor operator T
�

ðkÞðfkig, fkigÞ directly depends on the investigated system and
the chosen coupling scheme for the coupling of the single-spin tensor operators s

�

ðkiÞðiÞ.
As an example, the resulting expression for the general, tetrameric tensor operator T

�

ðkÞ
:: in the

case of a spin square shall be presented. The underlying coupling scheme of the single-spin tensor
operators is chosen to be pairwise because it is often advantageous to couple this way when
additionally point-group symmetries are used (see Appendix A.5). Then, the general irreducible
tensor operator of a tetrameric system takes the form

T
�

ðkÞ
:: ðk1, k2, k3, k4, k1, k2Þ ¼

n�
s
�

ðk1Þð1Þ � s
�

ðk2Þð2Þ
�ðk1Þ

�
�
s
�

ðk3Þð3Þ � s
�

ðk4Þð4Þ
�ðk2ÞoðkÞ: ð56Þ

Again, as for T
�

ðkÞ
;, Equation (53) also T

�

ðkÞ
:: includes all spin–spin interactions of a tetrameric spin

system, and thus it has to be specified in order to give the tensorial formulation of the desired four-
spin Hamiltonian.

The values of the ranks appearing in Equation (56) for the spin square modeled by a Heisenberg
Hamiltonian are shown in Table 1. The ranks of the single-spin tensor operators are fixed by the
particular spin–spin interaction. Then, the ranks of the intermediate tensor operators k1 and k2 can
be constructed from the known coupling rules with the given ranks ki, i¼ 1, . . . , 4, so as to yield an
irreducible tensor operator with k¼ 0.
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A.4. Matrix elements – decoupling

The calculations of the matrix elements of the Hamiltonian in Equation (55) are performed with the
help of the Wigner–Eckart theorem [12–17]. For this reason, the coupling scheme of the basis states
j�SMi cannot be chosen independently from T

�

ðkÞ. Those quantum numbers which appear within the
set � should also appear in the sets {ki} and fkig, i.e. the couplings for the generation of the basis
states and the general irreducible tensor operator of the system should be chosen to be equal.
Otherwise, transformations between states of different coupling schemes would be necessary.

In order to show how matrix elements can be calculated, the application of the decoupling
procedure is discussed for a square system. The Heisenberg Hamiltonian in tensorial form can be
derived from Equation (55) and is given by

H
�
œ ¼

ffiffiffi
3
p

J
X
hi, j i

T
�

ð0Þ
:: ðfkig, fkigjki ¼ kj ¼ 1Þ: ð57Þ

The general irreducible tensor operator of the tetrameric system T
�

ðkÞ
:: based on a pairwise coupling

scheme was already presented in Equation (56). The values of the ranks appearing in T
�

ðk¼0Þ
:: ðfkig, fkigÞ

are tabulated in Table 1. The pairwise coupling scheme in the used construction of T
�

ðkÞ
:: corresponds

to basis states of the form

j�SMi ¼ js1s2S1s3s4S2SMi:

By the application of the Wigner–Eckart theorem the calculation of the matrix elements of H
�
œ is

now – apart from the prefactor and the summation over the nearest-neighbor interactions according
to Equation (57) – reduced to the evaluation of terms like

h�SMjT
�

ð0Þ
:: ðfkig, fkigÞj�

0 S0M0i ¼ ð�1ÞS�M
S 0 S0

�M 0 M0


 �

	
	
s1s2S1s3s4S2S

��T
�

ð0Þ
::

��s1s2S01s3s4S02S0�: ð58Þ

In the case of a square four such terms appear in H
�
œ differing from each other by the values of

{ki} and fkig.
Since the Wigner-3J symbol in Equation (58) is reduced to

S 0 S0

�M 0 M0


 �
¼
ð�1ÞS�Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ 1
p � �S,S0�M,M0

Equation (58) itself is reduced to	
�SM



T
�

ð0Þ
:: ðfkig, fkigÞ



�0 S0M0� ¼ �S,S0�M,M0

	
ð�1Þ2ðS�MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Sþ 1
p �

	
s1s2S1s3s4S2S

��T
�

ð0Þ
::

��s1s2S 01s3s4S 02S�: ð59Þ

Table 1. Values of the ranks for a spin square described by a Heisenberg Hamiltonian. The rows
refer to the nearest-neighbor interaction hi, ji between single spins i and j.

k1 k2 k3 k4 k1 k2 k

h1, 2i 1 1 0 0 0 0 0
h2, 3i 0 1 1 0 1 1 0
h3, 4i 0 0 1 1 0 0 0
h4, 1i 1 0 0 1 1 1 0
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Since all matrix elements between states of different S and M vanish, it becomes obvious that all
calculations can be performed in subspaces H(S,M). Furthermore, because H

�
œ is independent of an

external magnetic field and thus no M-dependence of the energies is given, the spectrum can be
evaluated in subspaces H(S, M¼S ).

Following Equation (59) the matrix elements can directly be obtained by determining the
reduced matrix elements of T

�

ð0Þ
:: . By a successive application of Equation (19), i.e. a successive

decoupling of T
�

ð0Þ
:: , the reduced matrix elements are traced back to the reduced matrix elements of

single-spin tensor operators that are given in Equations (17) and (18) for k¼ 0, 1.
For the reduced matrix element of T

�

ðkÞ
:: the decoupling yields	

s1s2S1s3s4S2S
��T
�

ðkÞ
::

��s1s2S01s3s4S02S0�
¼
�
ð2Sþ 1Þð2S0 þ 1Þð2kþ 1Þ

�1
2
�
ð2S2 þ 1Þð2S

0

2 þ 1Þð2k2 þ 1Þ
�1
2
�
ð2S1 þ 1Þð2S

0

1 þ 1Þð2k1 þ 1Þ
�1
2

	

S1 S
0

1 k1

S2 S
0

2 k2

S S0 k

0
B@

1
CA

s3 s3 k3

s4 s4 k4

S2 S
0

2 k2

0
B@

1
CA

s1 s1 k1

s2 s2 k2

S1 S
0

1 k1

0
B@

1
CA

	
	
s1
��s
�

ðk1Þ
��s1�	s2��s

�

ðk2Þ
��s2�	s3��s

�

ðk3Þ
��s3�	s4��s

�

ðk4Þ
��s4�: ð60Þ

In the case of H
�
œ, the ranks of the tensor operators can be found in Table 1 and S0 is forced to be

S0 ¼S by the Wigner-3J symbol in Equation (58).
The clear structure of the resulting expression for a reduced matrix element in Equation (60) now

allows one to write a highly flexible and structured computer program that takes over the calculation
and diagonalization of the Hamilton matrix. Regarding the calculation of the matrix elements, a
recurrence formula can be implemented which decouples the irreducible tensor operator of the
system step-by-step [18].

A.5. Using point-group symmetries

General considerations concerning the use of point-group symmetries in Heisenberg spin systems
have already been presented in Sections 2.3 and 2.4. Now, as a clarification of these considerations, a
	-rotation around the central C2-axis of a spin square is considered (cf. Figure 17). According to a
successive coupling scheme, the vector-coupling basis states are given in the form js1s2S1s3S2s4SMi.
It must be emphasized here that the underlying coupling scheme, which determines the way basis
states are constructed, can be chosen independently of any symmetry considerations, although a
suitable choice will reduce the calculations as discussed below.

Figure 17 shows the coupling graph of the square with D4-symmetry operations. The operations
are labeled with respect to n-fold rotations around the given axes. Operations belonging to the same

Figure 17. [Colour online] Sketch of a spin square with D4-symmetry operations.
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class are marked with identical labels while identical operations belonging to different classes can be
distinguished by the number of primes.

In Table 2 the operators corresponding to the D4-symmetry operations on the square are given.
The operators are classified with respect to the classes they belong to. The mentioned operator that
acts in spin space and corresponds to a 	-rotation around the central axis takes the form G

�
ð3 4 1 2Þ.

According to the generalized Clebsch–Gordan coefficients for the coupling of four spins and
Equation (44), unfolding the state js1s2S1s3S2s4SMi into a linear combination of product states
results in the expression

js1s2S1s3S2s4SMi ¼
X

P
i
mi¼M

Cs1s2S1

m1m2M1
� CS1s3S2

M1m3M2
� CS2s4S

M2m4M

	 jm1m2m3m4i: ð61Þ

The summation indices are entirely determined by the constraint
P

i mi¼M. The values of the
intermediate magnetic quantum numbers Mi can be deduced from the magnetic quantum numbers
of the involved single spins, i.e. M1 ¼ m1 þm2 and M2 ¼M1 þm3.

Following Equations (26) and (61), performing the 	-rotation described by the operator
G
�
ð3 4 1 2Þ results in the expression

G
�
ð3 4 1 2Þ js1s2S1s3S2s4SMi ¼

X
P

i
mi¼M

Cs1s2S1

m1m2M1
� CS1s3S2

M1m3M2
� CS2s4S

M2m4M

	 jm3m4m1m2i: ð62Þ

Due to the performed permutation on the product states the resulting state cannot easily be
represented as a vector-coupling state belonging to the former coupling scheme given by the
successive addition of spin operators: s

�
ð1Þ þ s

�
ð2Þ ¼ S

�
ð1Þ, S

�
ð1Þ þ s

�
ð3Þ ¼ S

�
ð2Þ, and S

�
ð2Þ þ s

�
ð4Þ ¼ S

�
.

At this point, it becomes obvious that the operator G
�
is inducing a transition from the coupling

scheme, according to which the basis states have initially been constructed, to another one. A proper
re-labeling of the summation indices in the sum of Equation (62) with respect to a point-group
operation R�1, i.e. a (�	)-rotation around the central C2-axis, reveals the resulting coupling scheme
in which G

�
ð3 4 1 2Þjs1s2S1s3S2s4SMi can be represented as a vector-coupling state [34]. In this special

case one finds that G
�
ð3 4 1 2Þ is inducing a transition to a coupling scheme given by s

�
ð3Þ þ s

�
ð4Þ ¼

S
�
ð10Þ, S

�
ð10Þ þ s

�
ð1Þ ¼ S

�
ð20Þ, and S

�
ð20Þ þ s

�
ð2Þ ¼ S

�
. As a shorthand notation one can write



s1s2S1s3S2s4SM
�
�����!
G
�
ð3 4 1 2Þ 

s3s4S10s1S20 s2SM

�
,

with the limitation that this expression does not give the concrete values of the appearing quantum
numbers of the states. Nevertheless, it illustrates the transition between vector-coupling states of
different and thus independent coupling schemes.

Table 2. Classes of the D4 point group with corresponding operators for the spin square.
The symmetry (i.e. permutation) operations are defined as in the following example: G

�
ð2 3 4 1Þmeans

that spin 2 moves to position 1, spin 3 to position 2, spin 4 to position 3, and spin 1 to position 4.

D4

Classes

E C2 2C4 2C02 2C002

op’s G
�
ð1 2 3 4Þ G

�
ð3 4 1 2Þ G

�
ð4 1 2 3Þ G

�
ð2 1 4 3Þ G

�
ð1 4 3 2Þ

G
�
ð2 3 4 1Þ G

�
ð4 3 2 1Þ G

�
ð3 2 1 4Þ
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Following Equation (28) the action of the 	-rotation on a vector-coupling state of the chosen
form results in

G
�
ð3 4 1 2Þ



s1s2S1s3S2s4SM
�
¼
X
S
0

1,S
0

2

�S1,S10
�S2,S20

js1s2S
0

1s3S
0

2s4SMi

	 hs1s2S
0

1s3S
0

2s4SMjs3s4S10s1S20s2SMi: ð63Þ

As mentioned in Section 2.4 the main task when calculating the action of a point-group
operation on a vector-coupling state is the determination of the general recoupling coefficients
connecting states of the initial and the resulting coupling scheme. Generating a formula for general
recoupling coefficients can only be performed in a rather advanced procedure (see Appendix B).

Regarding the recoupling coefficients that appear when performing point-group operations, a
very helpful simplification shall be mentioned here. From Equation (62) it can be seen that the action
of the operator G

�
ð3 4 1 2Þ on the product states prevents the re-expression of the resulting linear

combination of product states as a simple vector-coupling state belonging to the initial coupling
scheme. However, the choice of the coupling scheme according to which the initial basis was
constructed is somewhat arbitrary. In order to minimize the computational effort, which is directly
related to the number of states with non-zero recoupling coefficient in Equation (63), one has to
choose a non-successive coupling scheme. A favorable coupling scheme of this kind is shown in
Figure 18. This scheme is referred to as a pairwise coupling scheme and the basis states look like
js1s2S1s3s4S2SMi. The 	-rotation around the central C2-axis of the square now induces a transition
that can be symbolized by



s1s2S1s3s4S2SM
�
�����!
G
�
ð3 4 1 2Þ 

s3s4S10s1s2S20SM

�
and leads according to Equation (27) to a recoupling coefficient of the form	

s1s2S1s3s4S2SM


s3s4S10s1s2S20SM

�
:

Now, the calculation of a formula for this recoupling coefficient is trivial since the intermediate spin
operators of the initial and the resulting coupling scheme are mutually the same, i.e. S

�
ð10Þ ¼ S

�
ð2Þ and

S
�
ð20Þ ¼ S

�
ð1Þ. Unfolding js3s4ðS10 ¼ S2Þs1s2ðS20 ¼ S1ÞSMi into a linear combination of product states

in analogy to Equation (61) leads to

js3s4S2s1s2S1SMi ¼
X

P
i
mi¼M

Cs3s4S2

m3m4M2
� Cs1s2S1

m1m2M1
� CS2 S1 S

M2 M1 M

	 jm1m2m3m4i:

In order to convert the Clebsch–Gordan coefficients to a form that appears when unfolding states of
the form js1s2S1s3s4S2SMi one simply has to use the symmetry property of the Clebsch–Gordan
coefficients from Equation (35). This leads to

CS2 S1 S

M2 M1 M
¼ ð�1ÞS1þS2�SCS1 S2 S

M1 M2 M
,

Figure 18. [Colour online] Visualization of two possible couplings for the square: successive
coupling scheme (left-hand side) and pairwise coupling scheme (right-hand side).
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and thus an expression for the recoupling coefficient is obtained which only contains one simple
phase factor: 	

s1s2S1s3s4S2SM


s3s4S10 s1s2S20SM

�
¼ ð�1ÞS1þS2�S:

The action of the operator performing a 	-rotation on a state belonging to the pairwise coupling
scheme mentioned above therefore directly results in a state belonging to the same coupling scheme
with an attached phase factor. Thus, it has been shown that with a cleverly chosen coupling scheme
the computational effort that is required for the calculation of symmetrized basis states according to
Equation (25) can be minimized. The graphical visualization of possible coupling schemes in a
square shown in Figure 18 makes it obvious that one will find a simple recoupling formula
depending only on phase factors whenever one can find a coupling scheme that is invariant under the
performed symmetry operation [34]. Since one has to sum over all symmetry operations of the group
in order to construct symmetrized basis states of a given irreducible representation (see Equation
(25)), the underlying coupling scheme should be chosen in such a way as to simplify all or at least
most of the resulting recoupling coefficients. This means that the coupling scheme should be
invariant under all or at least most of the symmetry operations.

However, one will not always be able to find a coupling scheme that simplifies the calculation of
the recoupling coefficients as shown above. Especially if the system under consideration is exhibiting
three-fold symmetry axes, such a procedure turns out to be impossible by means of a pairwise
coupling scheme. In this case a generalization of finding a recoupling formula independent of the
choice of the coupling scheme becomes necessary.

A.6. Computational effects of the choice of the coupling scheme

The computational realization of the theoretical background presented in this work has been a
central task. The performed calculations would not have been possible without developing a highly
parallelized computer program that is well adapted to use in a high performance computing
environment. In this section some remarks on the computational effects of the choice of the
underlying coupling scheme shall be given. In general, as long as a proper scaling is achieved the
most intuitive way to speed up calculations using high performance computers is to distribute
calculations among many processing units. Nevertheless, as will be seen below the right choice of
initial parameters like the coupling scheme can help to ease the problem of calculating energy spectra
and thermodynamic properties of magnetic molecules.

Since several terms appear in this section which might be unknown to the reader, their particular
meaning as well as related aspects shall be discussed first. The term computation time refers to the
cumulative time that is needed in order to perform a certain number of floating point operations
(FLOPs). The execution time refers to the runtime of the considered part of the program. Assuming a
parallel execution of the program with optimal performance, the computation time remains
unchanged although the operations are performed in parallel. A reduction of the computation time
can be achieved by reducing the number of FLOPs that have to be performed. In contrast to this, the
execution time usually decreases with increasing number of processing units. The change of the
execution time as a function of the used processing units is called scaling behavior. It is referred to as
optimal if the execution time is divided by 2 whenever the number of used processing units is
doubled. The speed up Sp using p processing units is defined as

Sp ¼
T1

Tp
, ð64Þ

where T1 and Tp refer to the execution times of the sequential and the parallelized algorithm,
respectively. An optimal speed up corresponds to Sp¼ p. The optimal speed up can be achieved if the
whole source code can be parallelized without dependencies between the operations which are
executed in parallel. Practically, sequential regions and communication between the processing units
often limit the speed up to a value that is lower than the number of processing units used.

In general, the computational realization of the presented framework can be divided into two
completely independent parts. On the one hand a matrix representation of the Hamiltonian is set up
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with the help of the irreducible tensor operator approach. On the other hand this matrix or
independent blocks of it are diagonalized, i.e. the eigenvalues and eigenvectors are determined
numerically.

If point-group symmetries are used, a very decisive role concerning the computation time is
played by the construction of symmetrized basis states. These functions appear as linear
combinations of the initial basis states. The weight of the states that are included in these linear
combinations is determined by general recoupling coefficients. If a coupling scheme can be found
that is invariant under all point-group operations, the number of states that contribute to a linear
combination representing a symmetrized basis state is minimized. As already mentioned, a reduction
of computation time is achieved by choosing a coupling scheme that minimizes the number of
appearing summation indices and Wigner-6J symbols.

The construction of symmetrized basis states plays an important role for extending the limits of
numerical exact diagonalization with the help of the concepts presented in this work. Whenever
the dimensions of the appearing matrices are to be reduced by the incorporation of point-group
symmetries, a certain amount of additional computation time has to be spent on the construction
of symmetrized basis states. Since the construction procedure cannot easily be parallelized, the use of
more processing units within this particular region does not always lead to the desired reduction of
execution time. In any case, one has to ensure that the recoupling formulas, which determine the
number of performed FLOPs, are the simplest in order to reduce computation time. As already
mentioned, this can be achieved by choosing a coupling scheme that is invariant under the operations
of the assumed point-group. The resulting recoupling formulas do then not contain Wigner symbols
and are optimal.

In Figure 19 the execution times for the determination of the energy eigenvalues of a
cuboctahedron with s¼ 3/2 in the subspace H(S¼ 0, M¼ 0, A1) are shown in dependence on the
chosen coupling scheme. The used point-group symmetry was D2 and execution times are given for
the choice of a completely invariant and a non-invariant coupling scheme, respectively. Comparing
the scaling behavior, one can see that the performance of both calculations is limited by the
construction of the symmetrized basis states. Furthermore, it becomes obvious that the set up of the
matrices is heavily influenced by the particular form of the symmetrized basis states. In the case of
the non-invariant coupling scheme the set up of the matrix has been much slower than in the case of
the invariant coupling scheme because the symmetrized basis states involve more states of the initial
(vector-coupling) basis.

Figure 19. [Colour online] Scaling of OpenMP parallelized regions. Exemplary calculations have
been performed using different coupling schemes (cuboctahedron s¼ 3/2, D2, H(S¼ 0, M¼ 0, A1)).
The crosses refer to an invariant coupling scheme while the circles refer to a non-invariant coupling
scheme. The black arrow indicates the different execution times for the set up of the matrices and the
dashed lines show the optimal scaling behavior.
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B. The calculation of general recoupling coefficients

In this section graph-theoretical considerations are presented that allow us to determine the action of
point-group operations on vector-coupling states. It is shown how a general recoupling formula can
be developed from mapping general Wigner coefficients on binary trees or Yutsis graphs.

In general, the problem of calculating recoupling coefficients has to be divided into two parts.
The first part is the generation of a formula that describes the transition between two different
coupling schemes. The second – and much easier – part is the evaluation of a given formula using a
specific set of quantum numbers [42]. This section is exclusively focused on the first part, i.e. the
generation of a recoupling formula that links different coupling schemes in systems with an arbitrary
number of participating spins which turns out to be more difficult.

B.1. Binary trees

In the literature one can find successful implementations that deal with the generation of formulas
for general recoupling coefficients which only involve a series of phase factors and Wigner-6J
symbols [45–47]. The most intuitive way of generating a recoupling formula is to operate on so-called
binary trees [116–118]. The correspondence between a binary tree and a given coupling scheme is
rather obvious. Each coupling of two spins sa and sb to a compound spin sc forms a triad that
corresponds to an elementary binary tree shown in Figure 20. This tree is composed of only three
angular momenta and can simultaneously be seen as representing a Clebsch–Gordan coefficient.
From such elementary trees a binary tree can be built up step-by-step that represents the chosen
coupling scheme. The tree constructed this way then contains all Clebsch–Gordan coefficients that
result from the decomposition of a vector-coupling state belonging to the particular coupling scheme
into product states (cf. Equations (43) and (44)).

Operating on binary trees in order to generate a formula for a general recoupling coefficient
directly leads to the procedure that limits the resulting expressions to 6J symbols. Here, the gener-
ation of a formula for the recoupling coefficient hs1s2S1s3S2s4SMjs3s4S10s1S20s2SMi, that appears in
Equation (63), shall be presented. In this case, generating a recoupling formula corresponds to
finding a transition between the binary trees that are shown in Figure 21. In other words, one
transforms the set of Clebsch–Gordan coefficients that is represented by the initial tree (left-hand
side of Figure 21) to the set that is represented by the targeted tree (right-hand side of Figure 21).

Following the usual graph-theoretical name convention the single-spin quantum numbers are
referred to as leaf nodes while the intermediate spin quantum numbers are called coupled nodes. The
total-spin quantum number appears as a coupled node of a special kind and is called root.

There are in general two types of operations that have to be performed in a certain manner in
order to yield the desired form of the recoupling coefficient. These operations are shown in Figure 22
and are called an exchange operation and a flop operation. Both operations are only performed on
subtrees of the initial tree, thus only leading to changes in the particular subtree while leaving the rest
of the tree unchanged. With every operation a certain contribution to the recoupling formula is
obtained.

An exchange operation refers to a recoupling coefficient that appears when considering the
recoupling of two spins sa and sb within a single triad. Obviously, the only way of recoupling these

Figure 20. Binary tree that corresponds to a single coupling of two spins sa and sb to a compound
spin sc.
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spins is to perform an exchange between them. The effect of this operation can easily be derived from
unfolding the vector-coupling states jsasbsci and jsbsasci in terms of product states according
to Equation (34). A state of the form jsasbsci can be written as a state of the form jsbsasci by using the
symmetry property of the Clebsch–Gordan coefficients from Equation (35), leading to a recoupling
coefficient

hsasbscjsbsasci ¼ ð�1Þ
�ðsaþsb�scÞ: ð65Þ

In analogy, a flop operation refers to the recoupling of three spins sa, sb, and sc. Denoting the
intermediate spin by sd and the total spin by sf, a successive coupling scheme would lead to states that
can be written as jsasbsdscsfi. However, a second coupling scheme can be designed that results in
states of the form jsasbscsesfi. By definition a transition between these coupling schemes is described
by a Wigner-6J symbol resulting in

hsasbsdscsfjsasbscsesfi ¼ ð�1Þ
�ðsaþsbþscþsfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sd þ 1Þð2se þ 1Þ

p
	

sa sb sd

sc sf se

� �
:

ð66Þ

Figure 22. Operations on a binary tree that lead to a formula for a general recoupling coefficient.

Figure 21. Transition between two binary trees that has to be performed in order to calculate the
recoupling coefficient hs1s2S1s3S2s4SMjs3s4S10s1S20s2SMi.
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It has to be mentioned that the flop operation shown in Figure 22(b) was assumed to create a node,
i.e. a spin quantum number that already exists in the targeted coupling scheme, namely se. Whenever
a flop operation is performed that creates a node which is unknown in the targeted coupling scheme,
a summation variable has to be introduced within the resulting contribution to the recoupling
formula. This summation variable is completely determined by the symmetry of the appearing
Wigner-6J coefficient. The contribution resulting from a flop operation that creates an unknown
node se0 within the binary tree would look like

ð�1Þ�ðsaþsbþscþsfÞ
X
se0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sd þ 1Þð2se0 þ 1Þ

p

	
sa sb sd

sc sf se0

� �
:

The desired formula for the recoupling coefficient from Equation (63) is now obtained by
performing a proper sequence of exchange and flop operations. This sequence is displayed in detail
in Figure 23. It is not the only possible sequence of operations on the binary tree that leads to a

Figure 23. [Colour online] Sequence of operations leading to the recoupling coefficient
hs1s2S1s3S2s4SMjs3s4S10s1S20s2SMi. Figures (b), (d), and (e) show exchange operations. In (a) and
(d) flop operations are shown.
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recoupling formula for the discussed transition. However, in this simple case the displayed sequence
leads to an optimal formula minimizing the number of resulting Wigner-6J symbols.

The result of the operations then reads

	
s1s2S1s3S2s4SM



s3s4S10s1S20s2SM
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2S10 þ 1Þð2S2 þ 1Þð2S1 þ 1Þð2S20 þ 1Þ

q

	 ð�1Þs1þs2þs3þs4þ3S
S1 s3 S2

s4 S S10

( )
s2 s1 S1

S10 S S20

( )
: ð67Þ

This simple form was only reached because the flop operations shown in Figures 23(a) and 23(c)
create nodes that already exist in the final coupling scheme, i.e. S10 and S20 .

As long as such simple recoupling coefficients are considered, the process of determining a
proper sequence leading from the initial coupling scheme to the targeted one can be easily done by
hand and does not need any automatization. Nevertheless, more sophisticated problems result
in transitions between binary trees that cannot easily be treated. Then, it becomes necessary to
set up an algorithm that automatically creates a proper – ideally optimal – sequence. Regarding
binary trees, known implementations [116,117] of such algorithms can be seen as trial-and-error
procedures.

By performing a subsequence of operations, initially containing only one exchange or flop
operation, one tries to find a tree containing a node that is known in the targeted coupling scheme.
Whenever it is impossible to find such a tree with the given number of operations in the subsequence,
the number of considered operations is increased, i.e. the subsequence is extended. A successful
implementation of this procedure leads to a stepwise creation of the targeted tree in which each
step is guaranteed to be performed with the smallest (overall) number of exchange and flop
operations. However, the minimization of the number of operations within the performed
subsequences does not ensure that the resulting recoupling formula is optimal. In general, a
recoupling formula is optimal if the number of occurring summation variables and Wigner-6J
coefficients is minimal. Since summation variables and 6J symbols are only introduced by flop
operations, generating an improved recoupling formula directly corresponds to reducing the number
of performed flops.

B.2. Graph-theoretical solution – Yutsis graphs

As shown in the last section, operating on binary trees in order to generate a recoupling formula
involving only phase factors, square roots, and Wigner-6J symbols already leads to a simple and
successful procedure. However, the process of determining an optimized sequence of operations
remains concealed. In order to improve this process and thus improve the recoupling formula,
ideas resulting from more advanced graph-theoretical considerations can be applied. In Refs.
[41,119–121] the problem of generating a recoupling formula was solved with the help of Yutsis
graphs. This procedure, providing a technically more difficult, but at the same time theoretically
more transparent way of generating an improved recoupling formula, shall be reviewed in this
section.

The creation of Yutsis graphs is a straightforward task starting from the background given in
Appendix B.1. In order to understand how these graphs evolve, an explanation of how to construct a
Yutsis graph shall be given here. Additionally, the reduction of such a graph leading to an improved
recoupling formula will be discussed briefly. The interested reader will find a deeper and more
theoretical investigation of general features of Yutsis graphs in the literature [115,122].

As already discussed in Section A.1 an expression for a recoupling coefficient in terms of
Clebsch–Gordan coefficients or Wigner-3J symbols can be found by decomposing the bra and
the ket states into sums of product states. In order to clarify this procedure, the recoupling
coefficient hs1s2S1s3S2s4SMjs3s4S10s1S20s2SMi shall be discussed in detail as an example. The
decomposition of js1s2S1s3S2s4SMi was already done in Appendix A.5 and is given in terms of
Clebsch–Gordan coefficients in Equation (61). Replacing the Clebsch–Gordan coefficients by
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Wigner-3J symbols yields

js1s2S1s3S2s4SMi ¼
X
fmig

X
fMig

Cð�Þ
s1 s2 S1

m1 m2 �M1

 !
S1 s3 S2

M1 m3 �M2

 !8<
:

	
S2 s4 S

M2 m4 �M

 !)
jm1m2m3 m4i, ð68Þ

where C(�) contains the square roots as well as the phase factors that appear when transforming
Clebsch–Gordan coefficients into Wigner symbols. The multiple sums run over all single-spin
magnetic quantum numbers mi and the magnetic quantum numbers Mi of the intermediate spins.
The curly brackets are reminiscent of a generalized Wigner coefficient. The same decomposition
yields for the ket state

js3s4S10s1S20s2SMi ¼
X
fmig

X
fMi0 g

Cð
Þ
s3 s4 S10

m3 m4 �M10

 !
S10 s1 S20

M10 m1 �M20

 !8<
:

	
S20 s2 S

M20 m2 �M

 !)
jm1m2m3 m4i: ð69Þ

From Equations (68) and (69) one immediately finds the following expression for the recoupling
coefficient: 	

s1s2S1s3S2s4SM


s3s4S10s1S20s2SM

�
¼

X
fmig, fm

0
i
g

P�ðfmigÞ � P

ðfm0igÞ

	 hm1m2m3 m4jm
0
1 m
0
2 m
0
3 m
0
4i

¼
X
fmig, fm

0
i
g

�fmig, fm
0
i
g P

�ðfmigÞ � P

ðfm0igÞ: ð70Þ

The abbreviationsP� andP
 stand for the generalizedWigner coefficients that depend on the quantum
numbers of the underlying coupling schemes which the sets � and 
 refer to. The derived expression for
the recoupling coefficient in Equation (70) still involvemagnetic quantum numbers. Since a recoupling
coefficient is in general independent of any magnetic quantum number, a simplification can be found
that only involves spin quantum numbers. Such a simplification was already found in the former
section with the help of binary trees and will now be discussed on the basis of Yutsis graphs.

Themain idea of generating a recoupling formula with the help of Yutsis graphs is – in a first step –
to set up a graphical representation of generalizedWigner coefficients as they appear in Equations (68)
and (69). Afterwards, these graphs are joined in order to build up a Yutsis graph that represents the
recoupling coefficient. A simplification of the constructed Yutsis graph according to special
operations then leads to the desired formula that is independent of magnetic quantum numbers.

The building blocks of Yutsis graphs are diagrammatic representations of Wigner-3J symbols.
Figure 24 shows two diagrammatic representations of the same Wigner-3J symbol

sa sb sc

ma mb mc


 �
:

Figure 24. Two diagrams of the same Wigner-3J symbol with different sign of the nodes. The sign is
related to the cyclic ordering of the lines.
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Such a representation consists of three lines and one node. With every spin quantum number in the
Wigner symbol a line is identified. The three lines are connected by the node. The node is labeled
with a (þ) or (�) sign while the lines are characterized by the direction they are pointing in. The (�)
sign denotes a clockwise orientation of the spin quantum numbers within the corresponding
Wigner-3J symbol (cf. Figure 24(b)) whereas the (þ) sign indicates an anticlockwise ordering
(cf. Figure 24(a)). The free ends of the lines represent the projections of the spin quantum numbers,
i.e. the magnetic quantum numbers ma, mb, and mc. If a line leads away from the node,
the corresponding magnetic quantum number appears with a positive sign in the Wigner symbol,
whereas it appears with a negative sign if the line is directed towards the node.

It is obvious that any operation that changes the diagrams of the Wigner symbol in Figure 24
will lead to a Wigner symbol that differs from the original one. Changing the sign of the node or
simultaneously changing the directions of all lines results in a factor that can be obtained from the
symmetry properties of the Wigner-3J symbols described in Section A.1. The change of the sign
corresponds to an uneven permutation of spins within the Wigner-3J symbol (cf. Equation (37))
while the change of all directions of the lines corresponds to multiplying the lower row of the original
Wigner-3J symbol by �1 (cf. Equation (38)). Both operations result in a phase factor of ð�1Þsaþsbþsc

whereas any rotation of the diagram has no effect on the Wigner-3J symbol since the ordering
remains unchanged.

In order to construct a graph that represents a generalized Wigner coefficient, another operation
has to be introduced. As shown in Figure 25, the diagrams of two Wigner symbols can be contracted
if two lines exist that are labeled by the same quantum number and point into the same direction.
The resulting graph then represents a summation over the corresponding magnetic quantum number
given by

X
ma

sa sb sc

ma mb mc


 �
sa sd se

�ma md me


 �
: ð71Þ

Figures 26(a) and 26(b) show graphical representations of the generalized Wigner coefficients as
found in Equations (68) and (69). They are easily constructed following the conventions introduced
above.

The arrangement of the diagrams representing generalized Wigner coefficients is chosen in such a
way as to ease the contraction of both graphs and was proposed in Ref. [115]. The graph representing
the left-hand side of the recoupling coefficient contains only negative nodes with the spins being
ordered clockwise around these nodes. In the graph belonging to the right-hand side of the recoupling
coefficient the spins are ordered anticlockwise around the nodes that exclusively have a positive
sign. The directions of the lines are chosen in Figure 26(a) so as to match the conventional form
of Wigner-3J symbols in generalized Wigner coefficients. In Figure 26(b) they are chosen in the
opposite direction in order to compensate the phase factors that result from the positive signs of
the nodes.

In Figure 26(c) both diagrams of the Wigner coefficients are contracted. The contraction
corresponds to a summation over the magnetic quantum numbers mi, i¼ 1, . . . , 4, as well as over M.
The summations over the magnetic quantum numbers of the intermediate spins fMig and fMi0 g has
already been included in the representations of the coupling schemes in Figures 26(a) and 26(b),

Figure 25. Contracting the open ends of two lines labeled by sa that leads to a summation over the
magnetic quantum number ma of the joined lines.
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respectively. The resulting Yutsis graph then represents – apart from square roots and phase
factors – the recoupling coefficient that is given in Equation (70).

In general, a recoupling coefficient is equal to a Yutsis graph, which is constructed according to
the above rules, times an additional factor [115]. This factor contains phase factors and square roots
that emerge from expressing Clebsch–Gordan coefficients in terms of Wigner-3J symbols and
additional contributions from initializing the graphical representation of the general Wigner
coefficients (see Figures 26(a) and 26(b)). It can be written as

ð�1Þ2 Sþ
PN�2

i¼1
Si0 þS

� � YN�2
i¼1

2Si þ 1
� �

2Si0 þ 1
� �" #1=2

: ð72Þ

Here N is the number of single spins in the system under consideration and the sum in the exponent
is running over all intermediate spin quantum numbers Si0 of the targeted coupling scheme.
S represents the sum of the so-called first coupled angular momenta, i.e. the sum of those spins
that appear in the bra-ket notation of the recoupling coefficient in the first position of each
coupling triad. In the case of the recoupling coefficient hs1s2S1s3S2s4SMjs3s4S10s1S20 s2SMi, the sum
of the first coupled angular momenta is given by

S ¼ s1 þ S1 þ S2 þ s3 þ S10 þ S20 :

The formula for the recoupling coefficient is now obtained by a successive reduction of cycles
that appear in the graph. A cycle refers to a loop that connects a certain number of nodes.

Figure 26. Graphical representation of the generalized Wigner coefficients for the coupling schemes
contained in the recoupling coefficient hs1s2S1s3S2s4SMjs3s4S10s1S20s2SMi as well as the resulting
Yutsis graph. (a) Shows the initial coupling scheme, (b) the targeted coupling scheme, and (c) the
resulting Yutsis graph.
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Depending on the number of connected nodes, different operations exist that reduce the graph.
Figure 27 shows the operations leading to a reduction of 2-, 3-, and 4-cycles. Additionally, an
interchange operation is shown that can be used in order to express cycles which cannot be reduced
immediately, i.e. cycles with more than four nodes, in terms of 2-, 3-, and 4-cycles [41]. The
contributions F to the recoupling formula resulting from the shown operations are listed in Table 3.
The values for the quantum numbers k related to the re-labeled edges in Figures 27(c) and 27(d) are
determined by the symmetry properties of the Wigner-6J symbols within these contributions.
Whenever performing reductions on a Yutsis graph, the directions of the edges as well as the signs of
the nodes have to be considered carefully. Within the Yutsis graph that is supposed to be reduced
these directions and signs eventually have to be changed in order to match the constellation of the
edges and the nodes shown in Figure 27. In this process the change of the direction of an edge s, i.e. a
contracted line, contributes with (�1)2s to the phase of the recoupling coefficient.

The contributions to the recoupling formula arising from reducing the Yutsis graph according to
the above mentioned operations are discussed in detail in Ref. [115] and shall not be further
explained here for the sake of brevity.

Figure 27. Operations on a Yutsis graph and resulting contributions to the recoupling formula.
(a), (b), and (c) show the reduction of 2-, 3-, and 4-cycles, respectively. In (d) the action of an
interchange operation is shown.

Table 3. Contributions F to the recoupling formula resulting from the reduction of an N-cycle
(cf. Figure 27). The case N44 refers to an interchange operation which is used in order to express
larger cycles in terms of 2-, 3-, and 4-cycles.

N F

2 (2saþ 1)�1 �sa,sb

3
sa sb sc
sd se sf

� �

4
P

kð�1Þ
kþsf�sh ð2kþ 1Þ

sa sd k
sh sf se

� �
sb sc k
sh sf sg

� �

44
P

kð�1Þ
sbþscþseþkð2kþ 1Þ

sa sb k
sd sc se

� �
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A Yutsis graph is said to be reduced whenever a graphical representation is obtained that
corresponds to the one in Figure 28. This representation is called a triangular delta and gives a factor
1, if sa, sb, and sc satisfy the triangular condition (Equation (31)), and a factor 0 otherwise [115].

Coming back to the example of calculating the recoupling coefficient
hs1s2S1s3S2s4SMjs3s4S10s1S20s2SMi that is displayed in Figure 26(c), one immediately finds two
3-cycles which can be reduced in order to generate a recoupling formula: s1-s2-S20 and s3-s4-S2. As a
result of this reduction, the recoupling formula contains, apart from phase factors and square roots,
two Wigner-6J symbols as in Equation (67).

However, as already mentioned in Appendix B.1 there is in general more than one possibility of
reducing a graph. Figure 29 shows a possible first step that reduces the outer triangle spanned by the
edges s1, s2, and S20 . For the sake of clarity the signs of the nodes as well as the directions of the edges
are omitted since they only contribute to the phase of the recoupling coefficient. As one can see after
reducing the outer triangle, four different triangles appear. The reduction of each triangle would then
lead to a triangular delta and therefore to a completed recoupling formula. These formulas look
slightly different but can of course be transformed into each other. One possible expression for the
recoupling coefficient is given by

hs1s2S1s3S2s4SMjs3s4S10s1S20s2SMi ¼ ð�1Þ
�s1�s2�s3�s4þS1�S10 þ2S20

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2S10 þ 1Þð2S20 þ 1Þð2S1 þ 1Þð2S2 þ 1Þ

q

	
S S1 S10

s1 S20 s2

( )
s4 S S2

S1 s3 S10

( )
: ð73Þ

Figure 29. Reduction of the outer triangle of the Yutsis graph from Figure 26(c).

Figure 28. Graphical representation of a triangular delta.
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So far, this section has dealt with the construction of a Yutsis graph and those operations that
reduce this graph to a triangular delta. In principle, one could generate recoupling formulas
and calculate general recoupling coefficients with this information. In the discussed example of
Figure 26(c) only triangles appear leading to an easy reduction that contributes two Wigner-6J
symbols to the recoupling formula. However, in larger systems with high symmetry often more
complicated recoupling coefficients have to be calculated. In order to minimize the computational
effort it is desirable to generate a formula that contains as few Wigner-6J symbols and summation
indices as possible. Again, they result from triangles, squares, and cycles of higher order.

The most intuitive way of generating an improved recoupling formula is to reduce the smallest
cycles first. This idea was implemented in Refs. [41,119,120] and already yields considerably
improved formulas in comparison to the use of a trial-and-error technique. However, these formulas
can be further improved by using a more sophisticated strategy of reducing cycles [121].

Summarizing this section, one can say that with the help of graph-theoretical methods the effect
of general point-group operations on vector-coupling states can be determined. Once this effect is
known, the eigenstates of the system under consideration can be labeled with respect to irreducible
representations of the point group. This characterization not only reduces the dimensions of the
Hamilton matrices saving hardware resources, but it also provides deeper insight into the physics of
the system arising from its geometry.
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